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Abstract 
Navigational trajectory planning requires the interaction of systems that include spatial 
orientation and memory. Here, we used a complex navigation task paired with fMRI 
pattern classification to examine head and travel direction tuning throughout the human 
brain. Rather than a single, static network, we report multiple simultaneous subnetworks 
that 1) have strong connections with both allocentric (world-centered) and egocentric 
(viewer-centered) movement trajectories, 2) change during the course of exploration, 3) 
code for past and future movements as well as the present direction, and 4) are strongest 
for individuals who convert their trajectories into egocentric movements once they have 
learned the environment. These findings shift our understanding of the neural processes 
underlying navigation from static structure-function relationships to  a dynamic 
understanding of the multiple brain networks that  support active navigation. The insights 
into the nature of individual navigation abilities uncovered here challenge the dominant 
framework of largely allocentric coding for successful navigation in complex 
environments, and replace this with a new framework that relies on multiple co-existing 
dynamic computations. 
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Introduction 
Head and travel directions are crucial in human wayfinding. The fundamental signals of 
head direction cells have been found in rodents1–3, including evidence for both allocentric 
(world-centered) and egocentric (viewer-centered) coordinate frames during movement. 
For example, hippocampal place cells and theta oscillations reflect past and future path 
trajectories4–8. Moreover, retrosplenial cortex and posterior parietal cortex code for routes 
and egocentric relationships9–11.  
 
In this study, we examined whether travel direction signals can be decoded in the human 
brain during active navigation, and if so, how individual decoding discriminability relates 
to navigation performance. We tested the hypothesis that humans possess multiple co-
existing reference frames that could be represented at the same time, rather than a single, 
static allocentric coding. That is, rather than individual brain structures performing 
individual aspects of navigation (e.g., the hippocampus computes metric cognitive maps), 
we propose a new, richer framework positing that multiple computations  are dynamically 
performed simultaneously across the human brain. To examine this question, we used 
multi-voxel pattern classifiers to decode both allocentric (north, south, east, west) and 
egocentric (left, right, straight) coordinate systems at the present time, as well as past 
and future trajectory information. 
  
Previous human neuroimaging studies have found brain areas that are sensitive to head 
direction, including retrosplenial cortex, thalamus, precuneus, extrastriate cortex, and 
early visual cortex12–18. These studies used neural adaptation methods, which do not 
discriminate one direction from another - yet this discrimination is the hallmark of head 
direction cells in animals1,2. Other studies that have used pattern classification methods 
relied on open field tasks or static images13,17,18. Open field tasks can discriminate 
between directions (30 vs 60 degree), but cannot be used for specific alignment or for 
trajectory planning, and static images provide just a single snapshot without the richness 
of the trajectory of movement. In this study, we sought to examine navigational signals in 
the human brain while individuals navigated around a complex, dynamic, and naturalistic 
environment that is more like environments people experience in daily life. In doing so, 
we sought to investigate the relationship between allocentric and egocentric reference 
frames in the human brain during navigation trajectory planning.   
 
In an fMRI study, we tested a large group of people (N = 98), who actively navigated in a 
complex virtual maze environment (Figure 1a, 1b)19. The navigation task consisted of an 
exploration phase and a test phase. During the 16-minute exploration phase, participants 
freely explored the maze to locate 9 objects, and were instructed to remember their 
locations. The maze was aligned along with four cardinal directions (arbitrarily defined as 
north, south, east, and west, see Methods). For each of the 48 test trials, participants 
started at one object and were instructed to navigate towards another object, within a 45 
second time limit (Figure 1c). To reduce feedback during the test phase, all objects were 
replaced with red spheres, so participants had to go to the location where they 
remembered the object was. Behavioral performance was measured by the proportion of 
correct trials in the task; performance ranged from near 0 to 100% accuracy (Figure 1d). 
This range allowed us to assess the relationship between the accuracy of the classifiers 
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in discriminating directions from brain signals (i.e., classifier strength) and task 
performance. We also tested the relationship with path efficiency (see Methods, 
Supplement). 
  

 
Figure 1. Navigation task and behavior. A) Overhead view of the maze with 9 target objects (red dots) and 
4 landmark paintings (purple rectangles) and arbitrary compass directions. Participants never saw this view. 
B) View from the maze at an intersection. Arrows indicate possible choices (left, right, or straight). C) An 
example trial from the test phase, which started at one object, going to another object. All objects turned 
into red spheres to minimize feedback. D) Histogram of accuracy for n=98 participants. Bin size was set to 
1%; black dashed line indicates chance performance. 
 
Critically, during both exploration and test phases, participants made choices about where 
to go next while stationary; they viewed a static image that displayed the possible choices 
(left, straight, and right) at each intersection (Figure 1b). Movement was gated such that 
each button press at each choice point caused visual movement to the next choice point 
(see Methods for a link to video of the task). This static time point and abundant trajectory 
information allowed us to distinguish between five different classification schemes at any 
given moment at an intersection: the current allocentric head direction (while stationary), 
the upcoming allocentric and egocentric movements (next timestep), and the past 
allocentric and egocentric movements (previous timestep). We were also able to test for 
allocentric and egocentric classification during the movements, to determine how these 
strong movement cues relate to travel direction signals in the brain.  
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We conducted intra-subject multivariate pattern classification for different head and travel 
directions in distributed regions of interest (ROIs) including the hippocampal and 
parahippocampal cortices20,21, basal ganglia22–24 (caudate, putamen, nucleus 
accumbens), visual cortex (extrastriate cortex16 and early visual cortex13,17,25), 
thalamus12, and parietal lobe (retrosplenial cortex12,13,17,26, precuneus12,15). These regions 
have previously been implicated in head direction or egocentric coding, as well as for their 
general importance to navigation and decision making (see Methods). 
 
 
Results 
Allocentric Head and Movement Direction Classifiers 
While first exploring and learning the environment, when participants were stationary at 
an intersection (at the “present” time), we found a network of regions within which we 
could decode allocentric head direction (Figure 2a, 2e, 2i). Specifically, we found that 
allocentric head direction information could be decoded in the hippocampus, retrosplenial 
cortex, thalamus, the striatal regions of caudate and putamen, and early visual cortex, 
suggesting that head direction signals are also providing information for navigation. 
Classification performance within this network was highly correlated (r [0.62, 0.89]) 
between most brain regions (Figure 2e), on any given trial, with an interconnected 
network relationship (Figure 2i). Yet during the test phase, we could only classify 
allocentric head direction when stationary in the early visual cortex (Figure 2b). Although 
correlations between classifications in all ROIs were significant, (r [0.42, 0.92]; Figure 2f), 
the network analysis revealed that the early visual cortex was largely separate from other 
regions, with a sub-network of retrosplenial, extrastriate, and nucleus accumbens bridging 
to the remaining ROIs, which tended to have paired couplings (Figure 2j). 
 
We also examined periods of visual movement when the paradigm moved the person to 
the next choice point in the maze. For both the exploration and test phases, during 
movement, allocentric head direction could be decoded based on patterns of activity 
within all of our ROIs  (Figure 2c, 2d). Interestingly, although classification was similarly 
successful in many of the brain regions, the correlations between them were much lower 
than for the stationary period (exploration: r [0.27, 0.69]; test: r [0.26, 0.69]); several 
smaller sub-networks emerged and both early visual cortex and extrastriate cortex had 
much lower correlations with all other ROIs. For example, during exploration, retrosplenial 
cortex was found to be a primary connector between early visual cortex and the rest of 
the brain, whereas during test extrastriate and precuneus served as the links (Figure 2g, 
2h, 2k, 2l). We also found strong correlations between classifier accuracies in the 
hippocampus, putamen, and thalamus (Figure 2k, 2l), which remained throughout much 
of our analyses.  
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 23, 2023. ; https://doi.org/10.1101/2023.08.22.554387doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.22.554387
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 

 
Figure 2. Performance of present allocentric coding (coding the current head direction at the present time) 
while stationary and present allocentric coding during movement, in 10 ROIs (THA, thalamus; RSC, 
retrosplenial cortex; PRC, precuneus; HPC, hippocampus; PHC, parahippocampal cortex; EXT, extrastriate 
cortex; V1, early visual cortex; CAU, caudate; PTM, putamen; NAcc, nucleus accumbens). A.-D. 
Classification accuracy in each ROI during the four sections of the task: A. allocentric stationary during the 
exploration phase, B. allocentric stationary during the test phase, C. allocentric movement during the 
exploration phase, D. allocentric movement during the test phase. E.-H. Pearson correlation matrices of 
classification accuracy in each pair of ROIs in the four sections of the task. Blank cells indicate non-
significant correlations. I.-L. Correlation networks among ROIs in the four sections of the task. Each color 
represents a separate subnetwork. Note: for better visualization, network connections were tuned with 
Gaussian Markov random field estimation using graphical LASSO and extended Bayesian information 
criterion to select optimal regularization parameters. As a result, weak Pearson correlations in correlation 
matrices may appear as negative connections in the network visualization. Nodes represent ROIs and 
edges represent tuned correlation coefficients. Subnetworks were generated based on hierarchical 
clustering and the optimal number of clusters were determined with a silhouette score. M.-P. Correlation 
coefficients between navigation performance (i.e., accuracy) and classification accuracy in each ROI in the 
four sections of the task. Q. Significant increase in allocentric stationary classification accuracy between 
the two exploration sessions (p = 0.043*). R. No change in allocentric classification accuracy between the 
two exploration sessions during movement. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 23, 2023. ; https://doi.org/10.1101/2023.08.22.554387doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.22.554387
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 

 
Egocentric Movement Direction Classifiers 
In addition to allocentric (cardinal) directions, we also examined whether multiple 
reference frames could be represented at the same time. To do so, we tested egocentric 
(left, right, straight) movement directions during the periods of visual movements - the  

same time points we used for the 
allocentric movement 
classification. Note that 
egocentric stationary only has one 
direction (straight) and so was not 
classified. Egocentric movement 
could be successfully decoded in 
all of our ROIs during the 
exploration phase (Figure 3a), 
and in all except thalamus and 
extrastriate cortex during the test 
phase (Figure 3b). Notably, there 
were no significant correlations in 
classifier accuracies between 
extrastriate cortex and the other 
ROIs during exploration, although 
the remainder of the correlations 
were moderately strong (r [0.40, 
0.71]; Figure 3c). During the test 
phase the correlations were very 
strong, but early visual cortex was 
only weakly correlated with 
precuneus (r [0.27, 0.93]; Figure 
3d). The network visualizations 
indicate a shift from a highly 
interconnected network during 
exploration (with the exception of 
extrastriate cortex;  Figure 3e) to 
a sparse network with paired 
clusters during the test phase 
(Figure 3f). Together, these 
findings indicate that both 
egocentric and allocentric frames 
of reference are represented in 
the brain at the same time, with 
distinct network relationships that 
are shaped during exploration. 

 
Figure 3. Performance of present egocentric movement in 10 ROIs (THA, thalamus; RSC, retrosplenial 
cortex; PRC, precuneus; HPC, hippocampus; PHC, parahippocampal cortex; EXT, extrastriate cortex; V1, 
early visual cortex; CAU, caudate; PTM, putamen; NAcc, nucleus accumbens). A. Classification accuracy 
in each ROI during egocentric movement during the exploration phase and B. Egocentric movement during 
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the test phase. C.-D. Pearson correlation matrices of classification accuracy in each pair of ROIs in 
exploration and test phases. Blank cells indicate non-significant correlations. E.-F. Correlation networks 
among ROIs in exploration and test phases. Each color represents a separate subnetwork. Note: for better 
visualization, network connections were tuned with Gaussian Markov random field estimation using 
graphical LASSO and extended Bayesian information criterion to select optimal regularization parameters. 
As a result, weak Pearson correlations in correlation matrices may appear as negative connections in 
network visualization. Nodes represent ROIs and edges represent tuned correlation coefficients. 
Subnetworks were generated based on hierarchical clustering and the optimal number of clusters were 
determined with silhouette score. G.-H. Correlation coefficients between navigation performance (i.e., 
accuracy) and classification accuracy in each ROI in the exploration and test phases. I. Significant decrease 
in egocentric movement classification accuracy between the two exploration sessions (p<0.001***).  
 
Changes During Learning 
We were particularly interested in the dynamics of how these neural representations 
changed during exploration. Because the exploration was divided into two 8-minute 
sessions, we compared the classification accuracy across the two sessions in all ROIs. 
We found a significant main effect of session for allocentric stationary periods (F(1, 95) = 
4.13, p = .043, ηp2 = .042), with classification strength increasing during exploration 
(Figure 2q), although there was no difference for the allocentric movement periods (F(1, 
95) = .17, p = .677, ηp2 = .002) (Figure 2r). Interestingly, classification accuracy for 
egocentric movement significantly decreased both as a main effect (F(1, 95) = 13.71, p < 
.001, ηp2 = .126) and for several ROIs considered individually (i.e., thalamus, putamen, 
retrosplenial cortex, and precuneus; ps < 0.05) (Figure 3i). Taken together, these findings 
suggest that the representation for allocentric directions strengthened during the course 
of exploration. In contrast, those for egocentric directions got weaker. 
  
Classification of Past and Future Trajectories 
The previous analyses allowed us to elucidate neural signals about participants’ present 
moment. Critically, they were engaged in a dynamic navigation task that could also 
provide rich information about their past and future trajectories. In addition to processing 
their current head direction at an intersection, participants were also deciding their path 
to learn the maze during exploration, as well as planning trajectories towards the target 
goal during the test phase. To examine future trajectory information within our ROIs, we 
attempted to decode both an individual’s future (one step ahead) and past (one step 
behind, see Supplement) movement using the same time points and data we used for the 
allocentric stationary classifiers. Intriguingly, allocentric future movements could be 
decoded during exploration within all ROIs except the nucleus accumbens (Figure 4a). 
During the test phase, we could successfully classify future allocentric movement in 
thalamus, putamen, parahippocampal cortex, and early visual cortex (Figure 4b). 
Classification for almost all regions in the network were highly correlated with each other 
during exploration, although with more moderate correlations with V1 (r [0.70, 0.96]; 
Figure 4e, 4i). The network was also fairly highly correlated during the test phase (r [0.34, 
0.90]), but now two large sub-networks emerged, both of which spanned visual, medial 
temporal, and basal ganglia regions (Figure 4f, 4j). A qualitatively similar pattern of results 
was seen for past allocentric movements, with all regions successfully classifying during 
exploration, although no regions passed significance during test (Figure S2). 
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Egocentric future movements were also significantly classified in all regions during 
exploration (Figure 4c). During the test, we were able to successfully classify future 
egocentric movements in the retrosplenial cortex, precuneus, extrastriate cortex, and 
early visual cortex (Figure 4d). Very similar results were seen for past egocentric 
movements (Figure S2). The correlations between egocentric classifications during 
exploration demonstrated a weakly but fairly evenly connected network (r [0.22, 0.68]; 
Figure 4g, 4k) with one relatively strong correlation between classifiers in hippocampus 
and putamen. During test the network analysis revealed several sub-networks, with early 
visual cortex only correlating with retrosplenial and extrastriate cortices and highly 
variable correlations between all ROIs (r [0.25, 0.90]; Figure 4h, 4l). Retrosplenial cortex 
appeared to serve as a bridge to the strong subnetwork of the remaining ROIs via the 
parahippocampal cortex. Thus, not only present but future and past information about the 
travel trajectory was represented in these brain areas during active navigation. 
 

 
Figure 4. Performance of allocentric and egocentric future movement in 10 ROIs (THA, thalamus; RSC, 
retrosplenial cortex; PRC, precuneus; HPC, hippocampus; PHC, parahippocampal cortex; EXT, extrastriate 
cortex; V1, early visual cortex; CAU, caudate; PTM, putamen; NAcc, nucleus accumbens). These 
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classifications are when the participant is stationary at an intersection, but we classified based on their next 
allocentric or egocentric movement. A.-D. Classification accuracy in each ROI during the four sections of 
the task: A. allocentric future movement during the exploration phase, B. allocentric future movement during 
the test phase, C. egocentric future movement during the exploration phase, C. egocentric future movement 
during the test phase. E.-H. Pearson correlation matrices of classification accuracy in each pair of ROIs in 
the four sections of the task. Blank cells indicate non-significant correlations. I.-L. Correlation networks 
among ROIs in the four sections of the task. Each color represents a separate subnetwork. Note: for better 
visualization, network connections were tuned with Gaussian Markov random field estimation using 
graphical LASSO and extended Bayesian information criterion to select optimal regularization parameters. 
As a result, weak Pearson correlations in correlation matrices may appear as negative connections in 
network visualization. Nodes represent ROIs and edges represent tuned correlation coefficients. 
Subnetworks were generated based on hierarchical clustering and the optimal number of clusters were 
determined with silhouette score. M.-P. Correlation coefficients between navigation performance (i.e., 
accuracy) and classification accuracy in each ROI in the four sections of the task.  
 
Relationship with Navigation Performance 
We sought to determine whether the strength of the classification accuracy was 
associated with subsequent performance in the navigation test. During the exploration 
phase, none of the egocentric or allocentric classifiers (including past, present, and future) 
showed any positive relationships between classification accuracy and behavioral 
accuracy on the task (Figure 2m, 2o, 4m, 4o, S2), with a few egocentric classifiers 
showing significant negative correlations (Figures 3g). This result suggests that the 
representations we found during exploration are broad signals, largely common across 
all individuals regardless of their eventual ability to learn the path layout, which is known 
as the graph structure of the environment27–30. We only found one meaningful correlation 
during exploration with eventual path efficiency (Figure S3a), for allocentric 
representations while stationary in thalamus. This result suggests that allocentric 
representations that were being built in thalamus during the exploration process 
eventually were translated into metric knowledge of the environment, for good learners. 
 
In contrast, in the test phase we found a large number of relationships between 
classification strength and performance in the task. Surprisingly, we found a negative 
relationship between classification strength of the stationary allocentric head direction 
classifier and both accuracy and path efficiency for almost all ROIs (r [-0.21, -0.29]; Figure 
2n, Figure S3b), as well as for past allocentric trajectories (r [-0.23, -0.29]; Figure S2n). 
During movement in the test phase, there was a positive relationship between allocentric 
classifier strength and performance in thalamus, hippocampus, parahippocampal cortex, 
caudate, putamen, and nucleus accumbens (r [0.26, 0.40]) (and with path efficiency in 
thalamus, hippocampus, caudate, putamen, and nucleus accumbens), such that people 
with stronger classification strength in those areas during test also performed better in the 
task (Figure 2p, Figure S3d). 
 
More strikingly, during the test phase the relationship between egocentric classification 
strength and performance in the navigation task was very strong and positive throughout 
most of our ROIs. For egocentric movement during the test phase, classification strength 
was positively correlated with accuracy (r [0.24, 0.57]) (with similar relationships in nearly 
all ROIs for path efficiency) in all regions, except for early visual cortex, which was 
significantly negatively correlated (r = -0.25) (Figure 3h, Figure S3f). When stationary, 
performance was remarkably correlated with the classification strength of future 
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egocentric movements in thalamus, hippocampus, parahippocampal cortex, extrastriate 
cortex, caudate, putamen, and nucleus accumbens (r [0.23, 0.54]) (with most of these 
same areas having a relationship with path efficiency) (Figure 4p, S3j). Past egocentric 
movement classification was correlated with accuracy in all ROIs except retrosplenial 
cortex (r [0.26, 0.57]; Figure S2p), with similar findings for path efficiency (Figure S3n). 
 
Together, these findings suggest that while processing movement, both allocentric and 
egocentric information is useful for performance. However, when stationary and planning 
movement trajectories, better navigators have converted their existing path knowledge 
into egocentric signals. 
  
  
Discussion 
Using multivariate pattern classification paired with an fMRI navigation task, we found 
evidence of simultaneous tuning to multiple features of head and travel direction in a 
distributed network in the human brain. This network 1) had strong connections with both 
allocentric and egocentric movement trajectories, 2) changed during the course of 
exploration, 3) coded for past and future movements as well as the present head direction, 
and 4) had classification strengths that were strongest for individuals who translated their 
future trajectories into egocentric movements once they learned the environment. Our 
findings provide detailed insight into the dynamics of trajectory planning in humans and 
move well beyond existing studies that have looked for evidence of individual brain 
structures performing individual aspects of navigation. These results support a richer 
framework of navigation, which posits that multiple computations are dynamically 
performed simultaneously.  
 
Our findings extend previous findings in humans and rodents demonstrating that  
thalamus, retrosplenial cortex, early visual cortex, and precuneus support head and travel 
direction1,3,12–15,17,25. Our results demonstrate a wider network of regions that support both 
egocentric and allocentric travel direction, including hippocampal and parahippocampal 
cortices, basal ganglia, and extrastriate visual regions. We found multiple sub-networks 
that support distinct aspects of head and travel information and that differ across 
exploration and test. In particular, we frequently observed correlations between classifier 
strengths in retrosplenial cortex, early visual cortex, extrastriate cortex, and precuneus as 
well as correlations between hippocampus, thalamus, and putamen.  
 
Beyond the direct classification of present heading or travel direction, we also found 
evidence of past and future trajectory coding at the same time points that we coded for 
allocentric direction. These findings suggest that these networks could be important for 
goal planning and decision making31–34. The rodent literature has found trajectory 
mapping in retrosplenial cortex9,10, and hippocampal coding of both spatial and non-
spatial trajectories4–6,35. Our findings provide important insight into how these trajectory 
mappings occur in the human brain. 
 
We also found a dynamic relationship between classifier strengths and performance in 
the task. During exploration, there were no significant positive and some significant 
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negative relationships between classifier strengths and eventual accuracy on the 
navigation task. During the test period, the stationary allocentric classifiers had significant 
negative correlations with task performance. In contrast, the exact same stationary time 
points had significant positive correlations with performance when classified based on the 
previous (past) and the following (future) egocentric movement. When presently moving, 
both allocentric and egocentric classifiers in the test phase were correlated with 
performance. These results suggest that better navigators  convert their path knowledge 
into egocentric signals during planning, and can rely on both egocentric and allocentric 
signals when moving. Notably, the hippocampus was among the regions where classifier 
strength of egocentric movements was associated with better performance. These 
findings challenge the standard perspective that the hippocampus is largely related to 
allocentric coding, and instead suggest that it is also important for egocentric processing. 
Furthermore, these findings challenge the dominant framework that allocentric coding is 
the primary mechanism for organisms to successfully navigate through complex 
environments.  
 
Together, the findings of this study call for a new framework of human navigation. We 
propose that the brain computes multiple co-existing representations of both egocentric 
and allocentric reference frames across a network of brain regions. Egocentric and 
allocentric reference frames trade off during learning, and egocentric codings may 
ultimately be most useful for reaching navigational goals if the navigator knows the 
environment. These multiple computations are not limited to the present time, but extend 
into the future and connect to the past, with the memory of previous trajectories 
influencing travel planning.  
 
Although we see strong evidence of coding of head and travel direction signals in the 
visual cortex, it is unlikely that the visual information alone is driving our results. Indeed, 
classification of the present allocentric stationary condition had generally poor accuracy 
during the test phase - except in early visual cortex - despite this being a fairly 
straightforward time to use visual information to determine head direction. It appears that 
other representations, such as egocentric and future planning, are becoming stronger, 
thereby minimizing the effects of simple visual features on our classification. 
 
We acknowledge that the navigation trajectories in our study were purely based on visual 
information; full proprioceptive and vestibular information could alter the nature of these 
head direction representations36. fMRI classification methods cannot always distinguish 
between independent coding in a brain region and strong connections from an input area 
that codes for that information. Likewise, declines in classifier accuracy during learning 
could reflect direct changes in that region’s processing or could indicate multiple 
sensitivities that average out. Combining human imaging work with current and future 
animal studies examining head direction and egocentric and allocentric representations 
can help disentangle these factors.  
 
By examining current, past, and future trajectory planning, our findings provide evidence 
of the dynamic nature of the brain networks that support active and complex navigation 
in humans and provide insights into the nature of how individuals acquire and use spatial 
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knowledge to plan trajectories in complex environments. Together, these findings mark a 
foundational shift away from the dominant framework of allocentric coding and instead 
support a new framework of navigation that includes multiple co-existing dynamic 
computations. 
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Materials and Methods 
  
Key resources table 
  
REAGENT or 
RESOURCE 

SOURCE IDENTIFIER 

Deposited Data     

Raw data This paper   

Schaefer cortical  (Schaefer et al., 
2018)37 

https://github.com/ThomasYeoLab/ 
atlas CBIG/tree/master/stable 

Harvard-Oxford 
subcortical atlas 

 (Desikan et al., 
200638; Frazier et al., 
200539; Goldstein et 
al., 200740; Makris et 
al., 200641) 

https://identifiers.org/ 
neurovault.image:1700 

Software and 
Algorithms 

    

RStudio 1.4   https://www.rstudio.com/ 

Python 3.0   https://www.python.org/ 

fMRIPrep (Esteban, Blair, et al., 
201842; Esteban, 
Markiewicz, et al., 
201843) 

https://fmriprep.org/ 

NiBetaSeries (J. Kent & Herholz, 
201944) 

https://nibetaseries.readthedocs.io/ 

nilearn (Abraham et al., 
201445) 

https://nilearn.github.io/ 
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Scikit-learn  (Pedregosa et al., 
201146) 

https://scikit-learn.org/ 

NiBabel  (Brett et al., 202047) https://nipy.org/nibabel/ 

NLTools   https://nltools.org/ 

  

Participants 

113 participants were recruited through previous studies, campus flyers, or word of 
mouth. Participants were pre-screened for neurological disease, psychotropic 
medication, and MRI safety compliance. Fifteen of those recruited failed to complete the 
experiment. Of these, five participants failed to schedule/show up the scan portion of the 
experiment, one subject was discarded due to technical issues, and nine subjects could 
not complete the study due to motion sickness or problems being in the MRI machine 
(e.g., claustrophobia). Further, we excluded two participants with high motion in the 
exploration phase, and seven participants with high motion in the test phase. Thus, the 
final dataset consisted of 96 participants (44 females, 52 males; age 18-37, mean = 20.75, 
s.d = 3.17) for the exploration phase, and 91 participants (44 females, 47 males; age 18-
37, mean = 20.79, s.d = 3.19) for the test phase (all 91 participants in the test phase 
dataset were also included in the exploration phase dataset). 

Virtual environments and navigation interface 

The desktop virtual maze environment (Figure 1) was adapted from tasks the lab has 
used previously19,27,30,48 and was designed to produce a wide range of performance. The 
environment consisted of several main hallways with branch alcoves containing nine 
target objects. Paintings on the walls of hallways served as landmarks to aid in orientation. 
Participants pressed arrow keys to move around the environment, with translations fixed 
at 1.0 m/s (virtual meters/second) and rotation speed fixed at 90◦ per second. Movement 
was gated such that the button presses at each choice point caused visual movement to 
the next choice point. This was achieved by recording videos of the movement between 
locations. The correct video would play based on the person’s location, facing direction, 
and the choice they made (left turn, right turn, or straight). A static image of each choice 
point was created by taking the first image of each video and adding the arrows of the 
potential choices in Photoshop (Adobe). The maze was created in Blender and rendered 
in Unity. The lab recorded videos from Unity and presented the experiment using E-Prime 
(Psychology Software Tools) software. 

Behavioral task 

The Maze Learning Task was designed to assess the ability to learn the graph structure 
of an environment—the paths and connections between locations19,27,30. A video example 
of a test trial is available online at https://www.youtube.com/watch?v=LMsGpo2Ss7M. 
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Exploration phase 

Participants navigated the virtual environment for 16 minutes, during two 8-minute fMRI 
scan runs, using a button box to make right or left turns or straight movement (Figure 1b). 
All participants were instructed to find all of the objects and learn their locations. Four 
different start locations were used; the start location was counterbalanced for each 
participant for each of the two runs. The exploration phase was the primary time to learn 
the environment, although some learning was possible during the test.  

Test phase 

Acquired spatial knowledge was tested on each trial by starting participants at one object 
in the maze, and then directing them to travel, via the shortest route, to another object 
using the hallways of the maze. Participants then used the button box to move through 
the maze like they did in the exploration phase, pressing a button when they thought they 
reached the target object. Feedback was minimized by changing all of the objects in the 
maze (including the start and target objects) into red spheres during the test phase (Figure 
1c), although the landmark paintings in the hallway remained. The participants could be 
instructed either to “Start at the spaceship, go to the clock”, or to “Go to the clock, start at 
the spaceship” and were informed of the subtle differences in wording prior to starting the 
trials. The start and target objects were each displayed for between 3-5 seconds, with the 
specific timing drawn from a random distribution in the range. This task tests graph 
knowledge27,30 because it requires knowing the connections of the hallways to reach the 
target without necessarily knowing the metric distances and angles between locations. 
Trials had a 45 second time limit. When the participant made a selection or when time 
expired, a 6-second (with random jitter) inter-trial interval began. 

Procedure 

One or two days prior to imaging, participants were greeted in the lab and were given 
information about the study. They signed consent forms indicating their consent to 
participate in the study and completed several paper and pencil spatial abilities tasks. 

The following day at the scanner, participants were given instructions about how to use 
the controller and given a short practice in a different environment to show them how the 
movement worked. They were instructed to find all the objects and learn their locations. 

Participants changed into scrubs and were shown the scanning equipment. After aligning 
the participant in the scanner and ensuring their comfort, including giving them earplugs 
and cushions, the scan session began. The first set of anatomical scans was collected 
(see Image Acquisition), then the experimental task began. 

Participants completed two 8-minute scan runs where they were free to explore the maze. 
At the end of the first run, participants were informed of how many objects they located 
and how many were left undiscovered. 

After the exploration phase, participants were given instructions for the test trials. They 
completed 6 scan runs consisting of 8 trials each (total = 48 trials). With nine objects in 
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the maze, a full permutation of all start and target pairs yielded 72 possible trials. 
However, due to time constraints, a subset of 48 trials was used for each participant. 
Three lists of trials were used, each with 2/3 of the possible trials. Each participant 
followed one of the lists, counterbalanced across participants. The trial list was presented 
in random order for each participant. 

Navigation metrics 

Accuracy 

Participants were scored by their proportion of correct trials. Trials were considered 
“correct” if the participant ended at the target object, regardless of whether they pressed 
the “selection” button or whether they ran out of time when just reaching the target. 
Proportion correct scores ranged from around chance performance (chance is defined as 
.111, or ending at 1 out of the 9 possible target objects) to perfect. Only 4 participants 
were correct on every trial. 

Path efficiency 

Participants were scored by their average path efficiency across trials. For each trial, the 
path efficiency score is path distance traveled (by the participant) divided by shortest path 
distance between the start and target location. We term this measure excess path ratio. 
Therefore, the excess path ratio ranges between 1 to infinity, where a score of 1 means 
the participant took the most efficient path possible and high ratios indicate very inefficient 
paths. 

Allocentric stationary facing directions 

Based on each participant’s individual behavioral travel trajectory, we constructed design 
matrices for each participant’s stationary facing directions. There were 4 stationary facing 
directions when standing still at an intersection: north, south, east, or west. Notice that 
the directions were arbitrarily defined, but different labels should not affect our analyses. 
Because participants were freely moving in the maze in both the exploration and test 
phases, we did not expect any two participants would share the same trajectory. 
Therefore, we constructed one design matrix for the exploration phase and one design 
matrix for the test phase separately for each person.  

We did not construct a design matrix for egocentric stationary facing directions because 
there was only one egocentric stationary facing direction (facing forward).  

Allocentric movements 

Based on each participant’s individual behavioral travel trajectory, we constructed design 
matrices for each participant’s present allocentric movements. There were 12 allocentric 
present movements: moving straight north, south, east, west, or turning from north to 
east, east to south, south to west, west to north, north to west, west to south, south to 
east, and east to north. More specifically, we constructed one design matrix for the 
exploration phase and one design matrix for the test phase separately for each person. 
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Because the maze environment was largely grid-based, almost all of the turns were 90◦, 
so we did not include the very few 180◦ turning events (i.e., south to north, east to west, 
typically at dead ends) in the analyses. 

Egocentric movements 

Based on each participant’s individual behavioral travel trajectory, we constructed design 
matrices for each participant’s present egocentric movements. There were 3 egocentric 
movements: forward/straight, turning left (counterclockwise) and turning right (clockwise). 
More specifically, we constructed one design matrix for the exploration phase and one 
design matrix for the test phase separately for each person. 

Allocentric future and past movements 

Based on each participant’s individual behavioral travel trajectory, we constructed design 
matrices for each participant’s allocentric future movements (i.e., the next move that they 
made, using an allocentric reference frame) when they were stationary at an intersection 
deciding where to go next. There were 12 allocentric future movements: moving straight 
north, south, east, west, or turning from north to east, east to south, south to west, west 
to north, north to west, west to south, south to east, and east to north. More specifically, 
we constructed one design matrix for the exploration phase and one design matrix for the 
test phase separately for each person. 

Allocentric past movements were constructed the same way, but using the previous move 
that the participant had made, using an allocentric reference frame. 

Egocentric future and past movements 

Based on each participant’s individual behavioral travel trajectory, we constructed design 
matrices for each participant’s egocentric future movements (i.e., the next move that they 
made, using an egocentric reference frame) when subjects were stationary at an 
intersection deciding where to go next. There were 3 egocentric future movements: 
moving forward, turning left (counterclockwise), or turning right (clockwise). More 
specifically, we constructed one design matrix for the exploration phase and one design 
matrix for the test phase separately for each person. 

Egocentric past movements were constructed the same way, but using the previous move 
that the participant had made, using an egocentric reference frame. 

fMRI acquisition 

MRI imaging was conducted on a 3.0T Siemens Prisma magnetic resonance imaging 
system at the UC Santa Barbara Brain Imaging Center using a 64-channel head coil. At 
the beginning of the scan session, approximately twenty minutes of anatomical scans 
were acquired, including a magnetization-prepared, rapid-acquisition gradient-echo 
(MPRAGE) T1 weighted sequence image (TR = 2500ms, TE = 2.2ms, 7° flip angle, FOV 
256mm × 256mm, voxel size 0.9mm × 0.9mm × 0.9mm), field maps, and one scan of 
diffusion weighted images. A 7-minute task-free resting state functional scan was also 
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acquired. Following this, two 8-minute task-based functional scans of the exploration 
phase of the maze task and six sets of task-based functional scans were acquired for the 
testing phase of the maze task; this section lasted approximately 40-50 minutes (TR = 
720ms, TE = 37ms, 52° flip angle, FOV 208mm x 208mm, voxel size 2.0mm x 2.0mm x 
2.0mm, 72 slices, multi-band acceleration = 8). After the task, another twenty minutes of 
anatomical scans were collected, including a second set of diffusion weighted images, 
and several T2 weighted images. The functional images analyzed here were obtained as 
part of the larger study consisting of both fMRI and anatomical images; the anatomical 
portion (i.e., diffusion images and T2) and resting state data are not analyzed or reported 
here. 

fMRI preprocessing 

Results included in this manuscript come from preprocessing performed using fMRIPrep 
1.5.10 (RRID:SCR 01621642,43), which is based on Nipype 1.4.2 (RRID:SCR 00250249,50). 

Anatomical data preprocessing 

The T1-weighted (T1w) image was corrected for intensity non-uniformity (INU) with 
N4BiasFieldCorrection51, distributed with ANTs 2.2.0 (RRID:SCR 00475752) , and used 
as T1w-reference throughout the workflow. The T1w-reference was then skull-stripped 
with a Nipype implementation of the antsBrainExtraction.sh workflow (from ANTs), using 
OASIS30ANTs as target template. Brain tissue segmentation of cerebrospinal fluid 
(CSF), white-matter (WM) and gray-matter (GM) was performed on the brain-extracted 
T1w using fast (FSL 5.0.9, RRID:SCR 00282353). Brain surfaces were re- constructed 
using recon-all (FreeSurfer 6.0.1, RRID:SCR 00184754), and the brain mask estimated 
previously was refined with a custom variation of the method to reconcile ANTs-derived 
and FreeSurfer-derived segmentations of the cortical gray matter of Mindboggle 
(RRID:SCR 00243855). Volume-based spatial normalization to one standard space 
(MNI152NLin2009cAsym) was performed through nonlinear registration with 
antsRegistration (ANTs 2.2.0), using brain-extracted versions of both T1w reference and 
the T1w template. The following template was selected for spatial normalization: ICBM 
152 Nonlinear Asymmetrical template version 2009c (RRID:SCR 00879656, 
TemplateFlow ID:MNI152NLin2009cAsym). 

Functional data preprocessing 

For each of the 8 BOLD runs found per subject (across the two exploration session scan 
runs and the 6 test trial runs), the following preprocessing was performed. First, a 
reference volume and its skull-stripped version were generated using a custom 
methodology of fMRIPrep. A B0-nonuniformity map (or fieldmap) was estimated based 
on a phase-difference map calculated with a dual-echo GRE (gradient-recall echo) 
sequence, processed with a custom workflow of SDCFlows inspired by the epidewarp.fsl 
script and further improvements in HCP Pipelines57. The fieldmap was then co-registered 
to the target EPI (echo-planar imaging) reference run and converted to a displacements 
field map (amenable to registration tools such as ANTs) with FSL’s fugue and other 
SDCflows tools. Based on the estimated susceptibility distortion, a corrected EPI (echo-
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planar imaging) reference was calculated for a more accurate co-registration with the 
anatomical reference. The BOLD reference was then co-registered to the T1w reference 
using bbregister (FreeSurfer) which implements boundary-based registration58. Co-
registration was configured with six degrees of freedom. Head-motion parameters with 
respect to the BOLD reference (transformation matrices, and six corresponding rotation 
and translation parameters) are estimated before any spatiotemporal filtering using mcflirt 
(FSL 5.0.959). The BOLD time-series (including slice-timing correction when applied) were 
resampled onto their original, native space by applying the transforms to correct for head-
motion. These resampled BOLD time-series will be referred to as preprocessed BOLD in 
original space, or just preprocessed BOLD. BOLD runs were slice-time corrected using 
3dTshift from AFNI 2016020760 (RRID:SCR 005927). The BOLD time series were 
resampled to surfaces on the following spaces: fsaverage5. The BOLD time-series 
(including slice-timing correction when applied) were resampled onto their original, native 
space by applying a single, composite transform to correct for head-motion and 
susceptibility distortions. These resampled BOLD time-series will be referred to as 
preprocessed BOLD in original space, or just preprocessed BOLD. The BOLD time-series 
were resampled into standard space, generating a preprocessed BOLD run in 
MNI152NLin2009cAsym space. First, a reference volume and its skull-stripped version 
were generated using a custom methodology of fMRIPrep. Several confounding time-
series were calculated based on the preprocessed BOLD: framewise displacement (FD), 
DVARS and three region-wise global signals. FD and DVARS were calculated for each 
functional run, both using their implementations in Nipype (following the definitions by61). 
The three global signals were extracted within the CSF, the WM, and the whole-brain 
masks. Additionally, a set of physiological regressors were extracted to allow for 
component-based noise correction (CompCor62). Principal components were estimated 
after high-pass filtering the preprocessed BOLD time-series (using a discrete cosine filter 
with 128s cut-off) for the two CompCor variants: temporal (tCompCor) and anatomical 
(aCompCor). tCompCor components were then calculated from the top 5% variable 
voxels within a mask covering the subcortical regions. This subcortical mask is obtained 
by heavily eroding the brain mask, which ensures it does not include cortical GM regions. 
For aCompCor, components were calculated within the intersection of the 
aforementioned mask and the union of CSF and WM masks calculated in T1w space, 
after their projection to the native space of each functional run (using the inverse BOLD-
to-T1w transformation). Components were also calculated separately within the WM and 
CSF masks. For each CompCor decomposition, the k components with the largest 
singular values were retained, such that the retained components’ time series are 
sufficient to explain 50 percent of variance across the nuisance mask (CSF, WM, 
combined, or temporal). The remaining components were dropped from consideration. 
The head-motion estimates calculated in the correction step were also placed within the 
corresponding confounds file. The confound time series derived from head motion 
estimates and global signals were expanded with the inclusion of temporal derivatives 
and quadratic terms for each63. Frames that exceeded a threshold of 0.5 mm FD or 1.5 
standardized DVARS were annotated as motion outliers. All resamplings can be 
performed with a single interpolation step by composing all the pertinent transformations 
(i.e. head-motion transform matrices, susceptibility distortion correction when available, 
and co-registrations to anatomical and output spaces). Gridded (volumetric) resamplings 
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were performed using antsApplyTransforms (ANTs), configured with Lanczos 
interpolation to minimize the smoothing effects of other kernels64. Non-gridded (surface) 
resamplings were performed using mri vol2surf (FreeSurfer). 

Many internal operations of fMRIPrep use Nilearn 0.6.2 (RRID:SCR 00136245), mostly 
within the functional processing work-flow. For more details of the pipeline, see the 
section corresponding to workflows in fMRIPrep’s documentation. 

Beta series analysis 

First level analyses were conducted using the beta series analysis method65, which has 
been used for previous navigation studies16,66. The beta series method utilizes the 
univariate fMRI data analysis so that parameter estimates (i.e., beta weights), reflecting 
the magnitude of the task-related blood oxygen level dependent (BOLD) responses are 
estimated for each trial. Therefore, the beta series analysis requires that the individual 
trials of events examined in the analysis be modeled separately.  

It is worth noting that, because all participants were allowed to freely move in the virtual 
environment during both exploration and test phases, the type of behavior (moving or 
stationary, the particular facing direction) at different time points will be different. 
Therefore, we did not create a design matrix before the experiment, but constructed a 
design matrix for each trial of each participant separately based on their behavioral data. 
The individualized design matrices were then implemented for first level analyses. 

Results included in this manuscript come from modeling performed using NiBetaSeries 
0.6.044, which is based on Nipype 1.4.249,50. 

Beta series modeling 

In addition to condition regressors, csf, white matter, global signal, trans x, trans y, trans 
z, rot x, rot y, rot z, framewise displacement, motion outlier* and a high-pass filter of 
0.0078125 Hz (implemented using a cosine drift model) were included in the model. 
‘Global signal’ refers to global signal processing. This confounder was included as 
suggested by67; ‘trans x, trans y, trans z, rot x, rot y, rot z’ refers to six degrees of head 
motion. Framewise displacement is a measurement of head motion from one voxel to the 
next. This confounder was included as it was shown to improve performance in groupwise 
analyses68; Motion outlier is a type of volume censoring that discards problematic time 
points (* refers to wildcard matching of all motion outliers for each subject). These 
confounders were included as it was shown to be effective in reducing motion-related 
artifacts69. AR(1) prewhitening was applied in each model to account for temporal 
autocorrelation. 

After fitting the model, the parameter estimate (i.e., beta) map associated with the target 
trial’s regressor was retained and concatenated into a 4D image with all other trials from 
the same condition, resulting in a set of N 4D images, where N refers to the number of 
conditions in the task. The number of volumes in each 4D image represents the number 
of trials in that condition. The same condition here means the same type of event. For 
example, in generating the betaseries for stationary allocentric facing directions (north, 
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east, south, west), all “north” event-related images were concatenated as one 4D image 
for each run in each subject. 

Software Dependencies 

Additional libraries used in the NiBetaSeries workflow include Pybids 0.9.570, Niworkflows 
1.0.4, Nibabel 3.1.0, Pandas 0.24.271, and Numpy 1.20.372,73. 

ROI analyses 

Our principal fMRI analyses were conducted using targeted a priori regions of interest 
(ROIs) (see Figure S1). Previous studies strongly suggest task-evoked directional 
activation in thalamus12, retrosplenial cortex12,13,17,26, precuneus12,15, extrastriate cortex16, 
and early visual cortex13,17,25. Because allocentric navigation function is typically centered 
around the hippocampus21,26, we also selected the hippocampus as an ROI. We were 
also interested in directional encoding for allocentric compared to egocentric frames of 
reference, and so we included basal ganglia regions, which are important for navigation 
with an egocentric strategy22–24 and with decision making74–76 (i.e., caudate, putamen, 
and nucleus accumbens). We did not include entorhinal cortex because segmenting 
entorhinal cortex requires a high-resolution image of the medial temporal lobe. 

All cortical ROIs (including retrosplenial cortex, precuneus, extrastriate cortex, 
parahippocampal cortex, and early visual cortex) were generated for each participant’s 
brain in the 521MNI space based on the Schaefer 100 regions atlas 
(https://github.com/ThomasYeoLab/CBIG/tree/master/ stable projects/brain 
parcellation/Schaefer2018 LocalGlobal)37. 

All subcortical ROIs (including thalamus, hippocampus, caudate, putamen, and nucleus 
accumbens) were generated for each participant’s brain in the 521MNI space based on 
the Harvard-Oxford subcortical probabilistic atlas with 25% threshold (https:// 
identifiers.org/neurovault.image:1700)38–41. All ROIs included combined bilateral regions. 

Multivariate pattern analysis 

To derive an index of trial-wise directional representation in eight different directional 
behaviors (see Navigation metrics; e.g., north, east, south, west for stationary facing 
direction), we computed category-selective pattern using multivariate pattern analyses 
(MVPA). Under the assumption that each person has a unique cognitive map, we 
conducted MVPA for each participant, with separate exploration (i.e., learning) and test 
phases. Because we were interested in head direction under both egocentric and 
allocentric frames of reference, we focused on activity in 10 ROIs (see ROI analyses). 
MVPA was performed using nilearn (https://nilearn.github.io/), Scikit-learn (https://scikit-
learn.org/), NLTools (https://nltools.org/) packages, and Python scripts. 

The multi-class classification was performed using a gaussian-kernelized support vector 
machine (SVM) with nested cross-validation under L2 regularization, based on a one-
versus-one classifier. For a better estimate of the generalization performance, we used a 
3-fold cross validation to evaluate the combination of two parameters: gaussian kernel 
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width and regularization penalization parameter (see Equation 3 and Equation 2). The 
data were first shuffled and then randomly split into 3 sets. For each parameter setting 
(grid search among 6 values (i.e., 0.001, 0.01, 0.1, 1, 10, 100) for each parameter, 
respectively), 3 accuracy values were computed, one for each split in the cross-validation. 
Then the parameter setting with the highest mean validation accuracy was chosen. The 
3-fold inner cross-validation was nested under a 10-fold outer cross-validation, where the 
dataset was first shuffled and then randomly split into 10 sets. The decoder was trained 
on 9 of the sets, and the performance was tested on the final set. This was done 10 times 
in a rotating fashion, so that each set was tested once. The performance on all test sets 
was generally averaged together to determine the overall performance (see Equation 1 
and Equation 2). The performance was measured by accuracy. 

The calculation follows the equations below: 

  
 

  

ROI masks were created using the Harvard-Oxford subcortical atlas and the Schaefer 
cortical atlas (see ROI analyses) and then applied to beta series from the whole brain 
voxels (see Beta series analysis) for each event type. To improve classification accuracy, 
we conducted a within-run mean-centering method for trial specific estimates77 (i.e., 
subtracting each voxel’s run-level mean across trials of all types within each run) with the 
exception of using default scaling for analyses that does not have all event types within 
each run (the test phase of the allocentric present direction, allocentric past direction, 
allocentric future direction analyses). 

The theoretical baseline was not implemented due to not fully balanced movements in 
each direction in each participant’s active navigation. Therefore, a more conservative 
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empirical baseline was established using the same analyses pipeline described above 
with a meta permutation-based test (take the average of all participants’ tests with label 
shuffles) for each ROI. 

Quantification and Statistical Analyses 

A one-sample t-test was conducted for group classification accuracy compared with 
empirical baseline, for each ROI, at exploration and test phases, respectively (with FDR 
correction for multiple comparisons78–80). To compare the model classification strength 
between the two exploration sessions, we first down sampled events in the second 
exploration phase to be equivalent to the event number in the first exploration session by 
randomly taking out ~10 events. Then we conducted session (session 1, session 2) x ROI 
(10 ROIs) two-way ANOVA analyses, with Tukey posthoc tests to compare the difference 
between the two exploration sessions. We also conducted ROI clustering based on 
correlation matrices of ROI classification accuracy in each phase using agglomerative 
hierarchical clustering81. The optimal clusters were determined with silhouette score82 and 
visualized with different colors in networks. We conducted Pearson correlation of 
classification accuracy between every pair of ROIs, between behavioral performance 
accuracy and the classification accuracy for each ROI, between path efficiency and the 
classification accuracy for each ROI, at exploration and test phases, respectively (with 
FDR correction for multiple comparisons78–80). All statistical analyses were conducted in 
RStudio. 
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Supplement 
 

 
Figure S1. Regions of interest (ROIs) for the analysis: thalamus, retrosplenial cortex, precuneus, 
hippocampus, parahippocampal cortex, extrastriate cortex, early visual cortex, caudate, putamen, nucleus 
accumbens. All cortical ROIs (retrosplenial cortex, precuneus, extrastriate cortex, parahippocampal cortex, 
and early visual cortex) were generated for each participant’s brain in the 521MNI space based on the 
Schaefer 100 regions atlas. All subcortical ROIs (including thalamus, hippocampus, caudate, putamen, and 
nucleus accumbens) were generated for each participant’s brain in the 521MNI space based on the 
Harvard-Oxford subcortical probabilistic atlas with 25% threshold. All ROIs included bilateral regions. 
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Figure S2. Performance of allocentric and egocentric past movement in 10 ROIs (THA, thalamus; RSC, 
retrosplenial cortex; PRC, precuneus; HPC, hippocampus; PHC, parahippocampal cortex; EXT, extrastriate 
cortex; V1, early visual cortex; CAU, caudate; PTM, putamen; NAcc, nucleus accumbens). These 
classifications are when the participant is stationary at an intersection, but we classified based on their 
previous allocentric or egocentric movement. A.-D. Classification accuracy in each ROI during the four 
sections of the task: A. allocentric past movement during the exploration phase, B. allocentric past 
movement during the test phase, C. egocentric past movement during the exploration phase, D. egocentric 
past movement during the test phase; E.-H. Pearson correlation matrices of classification accuracy in each 
pair of ROIs in the four sections of the task; I.-L. Correlation networks among ROIs in the four sections of 
the task. Each color represents a separate subnetwork. note: for better visualization, network connections 
were tuned with Gaussian Markov random field estimation using graphical LASSO and extended Bayesian 
information criterion to select optimal regularization parameters. As a result, weak Pearson correlations in 
correlation matrices may appear as negative connections in network visualization. Nodes represent ROIs 
and edges represent tuned correlation coefficients. Subnetworks were generated based on hierarchical 
clustering and the optimal number of clusters were determined with silhouette score; M.-P. Correlation 
coefficients between navigation performance (i.e., accuracy) and classification accuracy in each ROI in the 
four sections of the task. 
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Figure S3. Correlation coefficients between excess path ratio (path efficiency) and classification accuracy 
in 10 ROIs (THA, thalamus; RSC, retrosplenial cortex; PRC, precuneus; HPC, hippocampus; PHC, 
parahippocampal cortex; EXT, extrastriate cortex; V1, early visual cortex; CAU, caudate; PTM, putamen; 
NAcc, nucleus accumbens). Excess path ratio is the length of the path traveled divided by the shortest ideal 
path, for correct trials only. Thus, a lower score is a more efficient path, so negative correlations indicate 
that people with more efficient paths had better classification accuracy. A. allocentric stationary during the 
exploration phase, B. allocentric stationary during the test phase, C. allocentric movement during the 
exploration phase, D. allocentric movement during the test phase, E. egocentric movement during the 
exploration phase, F. egocentric movement during the test phase, G. allocentric future movement during 
the exploration phase, H. allocentric future movement during the test phase, I. egocentric future movement 
during the exploration phase, J. egocentric future movement during the test phase, K. allocentric past 
movement during the exploration phase, L. allocentric past movement during the test phase, M. egocentric 
past movement during the exploration phase, N. egocentric past movement during the test phase 
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