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Every year, millions of brain MRI scans are acquired in hospitals, which is a figure
considerably larger than the size of any research dataset. Therefore, the ability to
analyze such scans could transform neuroimaging research. Yet, their potential remains
untapped since no automated algorithm is robust enough to cope with the high
variability in clinical acquisitions (MR contrasts, resolutions, orientations, artifacts,
and subject populations). Here, we present SynthSeg+, an AI segmentation suite
that enables robust analysis of heterogeneous clinical datasets. In addition to whole-
brain segmentation, SynthSeg+ also performs cortical parcellation, intracranial volume
estimation, and automated detection of faulty segmentations (mainly caused by scans
of very low quality). We demonstrate SynthSeg+ in seven experiments, including an
aging study on 14,000 scans, where it accurately replicates atrophy patterns observed
on data of much higher quality. SynthSeg+ is publicly released as a ready-to-use tool
to unlock the potential of quantitative morphometry.

clinical brain MRI | segmentation | deep learning | domain-agnostic

Neuroimaging plays a prominent role in our attempt to understand the human brain, as
it enables an array of analyses such as volumetry, morphology, connectivity, physiology,
and molecular studies. A prerequisite for almost all these analyses is the contouring of
brain structures, a task known as image segmentation. In this context, MRI is the imaging
technique of choice, since it enables the acquisition of noninvasive scans in vivo with
excellent soft-tissue contrast.

The vast majority of neuroimaging studies rely on prospective datasets of high-quality
MRI scans and especially on 1 mm T1-weighted acquisitions. Indeed, these scans present
a remarkable white–gray matter contrast and can be easily analyzed with widespread
neuroimaging packages, such as SPM (1), FSL (2), or FreeSurfer (3), to derive quantitative
morphometric measurements. Meanwhile, brain MRI scans acquired in the clinic (e.g.,
for diagnostic purposes) present much higher variability in acquisition protocols, and
thus cannot be analyzed with conventional neuroimaging softwares. This variability is
threefold. First, clinical scans use a wide range of MR sequences and contrasts, which are
chosen depending on the tissue properties to highlight. Then, they often present real-life
artifacts that are uncommon in research datasets, such as very low signal-to-noise ratio,
or incomplete field of view. Finally, instead of using 3D scans at high resolution like in
research, physicians usually prefer to acquire a sparse set of 2D images in parallel planes,
which are faster to inspect but introduce considerable variability in terms of slice spacing,
thickness, and orientation.

The ability to analyze clinical datasets is highly desirable since they represent the
overwhelming majority of brain MRI scans. For example, 10 million brain clinical scans
were acquired in the US in 2019 alone (4). This figure is orders of magnitude larger
than the size of the biggest research studies such as ENIGMA (5) or UK BioBank (6),
which comprise tens of thousands of subjects. Hence, analyzing such clinical data would
considerably increase the sample size and statistical power of the current neuroimaging
studies. Furthermore, it would also enable the analysis of populations that are currently
underrepresented in research studies, e.g., UK BioBank and ADNI (7) with 95% white
subjects (8, 9), but that are more easily found in clinical datasets. Therefore, there is a
clear need for an automated segmentation tool that is robust to MR contrast, resolution,
clinical artifacts, and subject populations.

Related Works. The gold standard in brain MRI segmentation is manual delineation.
However, this tedious procedure requires costly expertise and is untenable for large-scale
clinical applications. Alternatively, one could only consider high-quality scans (i.e., 1 mm
T1-weighted scans) that can be analyzed with neuroimaging softwares, but this would
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drastically decrease effective sample sizes, because such scans are
expensive and seldom acquired in the clinic.

Several methods have been proposed for segmentation of
MRI scans of variable contrast or resolution. First, contrast-
adaptiveness has classically been addressed with Bayesian strate-
gies using unsupervised likelihood model (10). Nevertheless, the
accuracy of these methods progressively deteriorates at decreasing
resolutions due to partial volume effects, where voxel intensities
become less representative of the underlying tissues (11). While
such effects can theoretically be modeled within the Bayesian
framework (12), the resulting algorithm quickly becomes in-
tractable at decreasing resolutions, thus precluding analysis of
clinical scans with large slice thickness.

The modern segmentation literature mostly relies on super-
vised convolutional neural networks (CNNs) (13, 14), which
obtain fast and accurate results on their training domain (i.e.,
scans with similar contrast and resolution). However, CNNs
suffer from the “domain-gap” problem (15), where networks do
not generalize well to data with different resolution (16) or MR
contrast (17), even within the same modality (e.g., T1-weighted
scans acquired with different parameters or hardware) (18).
Data augmentation techniques have addressed this problem
in intramodality scenarios by applying spatial and intensity
transforms to the training data (19). However, the resulting
CNNs still need to be retrained for each new MR contrast or
resolution, which necessitates costly labeled images. Another
approach to bridging the domain gap is domain adaptation,
where CNNs are explicitly trained to generalize from a “source”
domain with labeled data, to a specific “target” domain, where no
labeled examples are available (18, 20). Although these methods
alleviate the need for supervision in the target domain, they still

need to be retrained for each new domain, which makes them
impractical to apply at scale on highly heterogeneous clinical
data.

Very recently, we proposed SynthSeg (21), a method that
can segment brain scans of any contrast and resolution without
retraining. This was achieved by adopting a domain random-
ization approach (22), where a 3D CNN is trained on synthetic
scans of fully randomized contrast and resolution. Consequently,
SynthSeg learns domain-agnostic representations, which provide
it with an outstanding generalization ability compared with
previous methods (21). However, SynthSeg frequently falters
when applied to clinical scans with low signal-to-noise ratio,
poor tissue contrast, or acquired at very low resolution—an issue
that we address in the present article.

Several strategies have been introduced to improve the robust-
ness of CNNs, most notably hierarchical models. These models
divide the final task into easier operations such as progressive
refining of segmentations at increasing resolutions (23) or
segmenting the same image with increasingly finer labels (24).
Although hierarchical models can help improving performance,
they may still struggle to produce topologically plausible seg-
mentations in difficult cases, which is a well-known problem
for CNNs (25). Recent approaches have sought to solve this
problem by modeling high-order topological relations, either
by aligning predictions and ground truths in latent space
during training (26), by correcting predictions with a registered
atlas (27), or with denoising networks (28).

While the aforementioned methods substantially improve
robustness, they do not guarantee accurate results in every
case. Hence, the ability to identify erroneous predictions is
crucial, especially when analyzing clinical data of varying quality.

A

B

Fig. 1. Overview of SynthSeg+. (A) Inference pipeline. All modules are implemented as CNNs. (B) Outputs of the intermediate modules for three representative
cases. On the first row, all modules obtain accurate results. On the second row, the denoiser corrects mistakes in the initial tissue classes (red boxes), ultimately
leading to a good segmentation. Third, the very low tissue contrast of the image leads to a poor segmentation, but the automated QC correctly identifies it as
unusable for subsequent analyses.
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Traditionally, this has been achieved with visual quality control
(QC), but several automated strategies have now been proposed
to replace this tedious procedure. A first class of methods seeks
to register predictions to a pool of reference segmentations to
compute similarity scores (29), but the required registrations
remain time-consuming. Therefore, recent techniques employ
fast CNNs to model QC as a regression task, where faulty
segmentations are rejected by applying a thresholding criterion
on the regressed scores (30–32).

Contributions. In this article, we present SynthSeg+, a clinical
brain MRI segmentation suite that is robust to MR contrast,
resolution, clinical artifacts, and a wide range of subject pop-
ulations. Specifically, the proposed method leverages a deep
learning architecture composed of hierarchical networks and
denoisers. This architecture is trained on synthetic data with the
domain randomization approach introduced by SynthSeg, and
is shown to considerably increase the robustness of the original
method to clinical artifacts. Furthermore, SynthSeg+ includes
new modules for cortex parcellation, automated failure detection,
and estimation of intracranial volume (ICV, a crucial covariate in
volumetry). All aspects of our method are thoroughly evaluated
on more than 15,000 highly heterogeneous clinical scans, where
SynthSeg+ is shown to enable automated segmentation and
volumetry of large, uncurated clinical datasets. A first version
of this work was presented at MICCAI 2022, for whole-
brain segmentation only (33). Here, we considerably extend
our previous conference paper by adding cortical parcellation,
automated QC, and ICV estimation, as well as by evaluating our
approach in five new experiments. The proposed method can be
run with FreeSurfer using the simple following command:

mri_synthseg --i [input] --o [output] --robust

Results

A Multitask Segmentation Suite. SynthSeg+ segments unimodal
brain MRI scans by using hierarchical modules designed to
efficiently decompose the segmentation task into easier inter-
mediate steps that are less prone to errors (Fig. 1). Specifically,
a first network S1 produces preliminary segmentations of four
coarse tissue classes, which are corrected for potential topological

mistakes by a denoiser D (see red boxes in Fig. 1B). Next,
predictions of the target labels are obtained with a segmenter
S2. The obtained cortical region is then further parcellated using
a segmenter S3. Finally, a regressor R provides us with “QC
scores” (describing the quality of the obtained segmentations)
for 10 regions, which we use to perform automated QC. We
emphasize that all segmentations are given at 1 mm isotropic
resolution, regardless of the native resolution of the input.

In the following experiments, we first quantitatively evaluate
the accuracy of SynthSeg+ for whole-brain segmentation and
cortex parcellation. Next, we assess the performance of the
automated QC module for automatic failure detection. We
then present results obtained for ICV estimation, and a proof-
of-concept volumetric study for the detection of Alzheimer’s
Disease patients. Finally, we demonstrate SynthSeg+ in a real-
life study of aging conducted on more than 14,000 uncurated
and heterogeneous clinical scans.

Whole-Brain Segmentation on Clinical Data. In this first
experiment, we quantitatively assess the accuracy of SynthSeg+
for whole-brain segmentation of clinical acquisitions. For this
purpose, we use 500 heterogeneous labeled scans, that we take
from the picture archiving communication system (PACS) of
Massachusetts General Hospital. We compare SynthSeg+ to
SynthSeg (21) and three ablations. First, we evaluate an archi-
tecture representative of classical cascaded networks (S1 +S2), by
ablating the denoiserD. Then, we test two more variants obtained
by appending a denoiser to SynthSeg (SynthSeg+D) and the
cascaded networks (S1+S2+D), with the aim of evaluating state-
of-the-art postprocessing denoisers (28). We measure accuracy
with Dice scores, which quantify the overlap between predicted
and reference segmentations.

For visualization purposes, we split the results into three
classes based on a visual QC performed on the segmentations
of SynthSeg: “big fails,” “mild fails,” and “passes” (Fig. 2). The
results, shown in Fig. 3A, reveal that the hierarchical design of
SynthSeg+ considerably improves robustness (with a mean 76
Dice points) and yields the best scores in all three categories.
SynthSeg+ shows an outstanding improvement of 23.5 Dice
points over SynthSeg for big fails, and outperforms it by 5.1
and 2.4 points on mild fails and passes, respectively.

A B

Fig. 2. Segmentations obtained by all tested methods. (A) Comparison between whole-brain segmentations produced by SynthSeg+ and SynthSeg. Here, we
show the results obtained for three cases, where SynthSeg, respectively, exhibits large (“big fail”), moderate (“mild fail”), and no errors (“pass”). Yellow arrows
point at notable mistakes. SynthSeg+ produces excellent results given the low SNR, poor tissue contrast, or low resolution of the input scans. (B) Segmentations
obtained on the same scans by three variants of our method. Note that appending D substantially smooths segmentations.
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A C

DB

Fig. 3. Dice scores for whole-brain segmentation (A and B) and cortical parcellation (C and D). For (A) and (C), we evaluate the competing methods on 500
heterogeneous clinical scans, presented based on a visual QC of SynthSeg segmentations. The results in (B) and (D) are obtained on scans of four MRI modalities
at decreasing resolutions. For each dataset, the best method is marked with ∗ or ∗∗ if statistically better than the others at a 5% or 1% level (one-sided
Bonferroni-corrected Wilcoxon signed-rank test).

In comparison with cascaded networks, employing a denoiser
D in SynthSeg+ to correct the mistakes of S1 consistently
improves the results by 2.3 to 5.1 Dice points. Additionally, using
D within our framework (rather than for postprocessing) enables
us to substantially outperform the two other variants by 3.1 to 6.2
Dice points. This outcome is explained by the fact that denoisers
return very smooth segmentations, especially for the convoluted
cortex (Fig. 2). While the denoiser D of our method also exhibits
important smoothing effects (Fig. 1), we emphasize that these
are successfully recovered by S2, which produces segmentations
with sharp boundaries.

Robustness Against MR Contrast and Resolution. We now
evaluate the performance of SynthSeg+ as a function of MR
contrast and resolution. Here, we use high-resolution research
scans (1 mm isotropic resolution) of four MR contrasts, and arti-
ficially downsample them at progressively decreasing resolutions.
Specifically, we downsample 20 T1-weighted, 18 T2-weighted, 8
proton density (PD), and 18 deep brain stimulation (DBS) scans
to nine different resolutions: 3, 5, and 7 mm in axial, coronal,
and sagittal orientation.

The results are displayed in Fig. 3B and show that both
SynthSeg and SynthSeg+ maintain a high level of accuracy across
all tested contrasts and resolutions (above 80 Dice points). The
two methods yield very similar scores, but with different trends:
While SynthSeg produces slightly sharper and more accurate
segmentations at 1 mm isotropic resolution (up to 1.4 Dice points
better), SynthSeg+ remains more robust at lower resolutions,
where it obtains superior scores for all MRI modalities (maximum
gap of 1.6 Dice points).

Cortex Parcellation. Here, we assess the accuracy of SynthSeg+
for cortex parcellation, and compare it against the results obtained
by appending the cortical parcellation module S3 to SynthSeg.
Fig. 3C shows that, as in the first experiment, SynthSeg+ vastly
improves the results of SynthSeg on heterogeneous clinical data:
it yields better scores by 17.1 Dice points on big fails, and is
superior by 1.8 points on good cases. Regarding the evolution
of performance at decreasing resolutions, Fig. 3D confirms the
trend observed for whole-brain segmentation: although SynthSeg
is more accurate at high resolution (largest gap of 1.6 Dice
points for 1 mm T1-weighted scans), it is outperformed by
SynthSeg+ at lower resolutions (2.6 points for 7 mm proton

density scans). We note that the scores for cortex parcellation are
below those obtained for whole-brain segmentation, which is not
surprising since cortical regions are smaller and more convoluted,
and thus harder to segment. Nonetheless, the present results are
remarkable since they are similar to the scores obtained by a state-
of-the-art supervised CNN trained on T1-weighted scans (19).

Automated Quality Control. We now test the automated QC
module of SynthSeg+ on the 500 clinical scans employed in
the previous experiments plus 94 new scans that were almost
unusable due to insufficient field of view, wrong organs, critical
artifacts, etc. These 594 scans are segmented with SynthSeg+,
and visually classified by an expert neuroanatomist (Y.C.) on a
pass/fail basis. This analysis results in a rejection rate of 18.2%
for SynthSeg+, while this rate falls to a remarkable 4.9% when
excluding the unusable scans (see examples of fails in SI Appendix,
Appendix 2). We now seek to automatically replicate the results
of this visual QC. Here, SynthSeg+ is set to reject a segmentation
if at least one region obtains an automated QC score below 0.65.
We compare SynthSeg+ against two competitors: a state-of-the-
art technique for regression of QC scores (31) and a simpler
version of this work, where the segmentation quality is estimated
by computing Dice scores between the outputs of D and S2 (the
labels of the latter being converted to the four tissue classes).

Table 1 reports the sensitivity, specificity, accuracy, and
area under the ROC curve (AUC) (35) obtained by each
method for this binary classification task (ROC curves are given
in SI Appendix). Despite its relative simplicity, the approach
comparing the outputs of D and S2 already yields a fair accuracy:
it correctly classifies 88.4% of the cases, albeit with limited
specificity (66.8%). While the two other strategies vastly improve

Table 1. Results of the automated QC analysis on 594
clinical heterogeneous scans for SynthSeg+ and two
competitors
Method Sensitivity Specificity Accuracy AUC

D vs. S2 outputs 0.936 0.668 0.884 0.858
Liu et al. (31) 0.982 0.906 0.968 0.989
SynthSeg+ (R) 0.999 0.906 0.981 0.998

The best score for each metric is in bold. No statistical difference is found for the AUC
between Liu et al. (31) and our regressor R [P = 0.081 when computing a DeLong test (34)].

4 of 10 https://doi.org/10.1073/pnas.2216399120 pnas.org
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Fig. 4. Scatter plot of ICVs predicted by SynthSeg+ and FreeSurfer (3) on the
500 clinical scans. Orange points depict 1-mm T1-weighted acquisitions (N =
62), while the other scans are in green. The gray dashed line marks where
abscissa is equal to ordinate. The Pearson correlation coefficient between the
two methods is 0.910 when considering all scans, and 0.906 for T1-weighted
scans only (P < 10−9 in both cases).

the results (with accuracies above 96%), the simple regressor used
in SynthSeg+ obtains scores very similar to the dedicated state-
of-the-art method (31): although no statistical difference can be
inferred between AUCs using a DeLong test (34), our approach
slightly outperforms Liu et al. for all metrics other than specificity.

Intracranial Volume Estimation. ICV estimation is a crucial task
in volumetric studies since it is used to correct head-size effects.
Here, we use the clinical dataset of 500 scans to compute corre-
lation coefficients between the ICVs estimated with SynthSeg+
and FreeSurfer (3). First, we focus on a subset of 62 T1-weighted
scans at 1 mm resolution since analyzing these high-quality scans
will provide us with a theoretical upper bound for correlation. For
these scans, Fig. 4 illustrates that both methods produce strongly
correlated ICVs (Pearson’s r = 0.910). Remarkably, the results
hardly change when extending this analysis to all the 500 scans
(r = 0.906, p = 0.071 for a two-sided signed-rank Wilcoxon
test between the two ICV distributions), which highlights the
robustness of our ICV estimation module against clinical data of
varying quality. Finally, a closer inspection of Fig. 4 reveals that
SynthSeg+ tends to predict lower values than FreeSurfer for bigger
heads. This observation is consistent with the literature, where
similar results have been reported when comparing FreeSurfer to
ICVs derived from manual segmentations (36).

Alzheimer’s Disease Volumetric Study. We now conduct a
proof-of-concept volumetric analysis to study whether SynthSeg+
can detect subtle hippocampal atrophy linked with Alzheimer’s
Disease (37). Here, we use a new dataset of 100 subjects, half
of whom are diagnosed with Alzheimer’s Disease. All subjects
are imaged with 1 mm T1-weighted scans, and fluid-attenuated
inversion recovery (FLAIR) scans at 5-mm axial resolution, which
enables us to study performance across images of varying quality.
The predicted hippocampal volumes are linearly corrected for
age, gender, and ICV (estimated with SynthSeg+). Differences
between control and diseased populations are then measured by
computing effect sizes with Cohen’s d (38).

Table 2 reports the results obtained by FreeSurfer, SynthSeg
and SynthSeg+. It shows that all methods yield strong effect
sizes (between 1.36 and 1.40) on the T1-weighted scans. While
segmenting the hippocampus is of modest complexity in 1 mm
T1-weighted scans, this task becomes much more challenging on

Table 2. Effect sizes for hippocampal volumes pre-
dicted by FreeSurfer, SynthSeg, and SynthSeg+ between
50 controls and 50 Alzheimer’s Disease patients
Contrast Resolution FreeSurfer SynthSeg SynthSeg+

T1 1 mm3 1.38 (0.895) 1.40 (0.898) 1.36 (0.891)
FLAIR 5 mm axial - 1.23 (0.876) 1.20 (0.872)

All subjects were imaged with 1-mm T1-weighted scans, as well as 5-mm axial FLAIR scans.
AUC scores obtained by every method are shown in parentheses. All approaches produce
very similar results, and no statistical difference can be inferred (DeLong tests on AUCs all
result in P values above 0.3).

the axial FLAIR scans, where the hippocampus only appears in
very few slices (often just 2 to 4). Nonetheless, both SynthSeg and
SynthSeg+ maintain a remarkable level of accuracy and are still
able to detect strong effect sizes (1.23 and 1.20, respectively).
We emphasize that the results obtained are very similar across
methods, which is confirmed by the absence of statistical
difference when running DeLong tests on corresponding AUCs
(all P values are above 0.3).

Aging Study on Over 14,000 Clinical Scans. In this final ex-
periment, we conduct a proof-of-concept clinical volumetric
study on 14,752 scans from 1,367 patients with neurology
visits at the Massachusetts General Hospital (Materials and SI
Appendix, Appendix 1 for detailed information). Specifically, we
verify whether SynthSeg+ is able to reproduce well-known aging
atrophy patterns. We first process all scans with SynthSeg+ and
filter the results with the automated QC module. Instead of
rejecting whole segmentations based on a global threshold, we
now apply a per-structure rejection criterion, where we only keep
the volumes corresponding to regions with a QC score above
0.65. This provides us with between 12,954 (cortex) and 13,357
(white matter) volumes for each region. We then build age–
volume trajectories independently for each region with a B-spline
model, with linear correction for gender and scan resolution.
Remarkably, Fig. 5 shows that the obtained trajectories are highly
similar to the results obtained by recent studies on scans of
much higher quality (i.e., 1 mm T1-weighted scans) (39–41).
For example, SynthSeg+ accurately replicates the peak in white-
matter volume at approximately 30 y of age, the acute increase
in ventricular volume for aging subjects, and the early onset of
thalamic atrophy compared to the hippocampus and amygdala.

If we now compare it to SynthSeg, the proposed approach
exhibits similar trajectories but produces far fewer outliers
(Fig. 6). This can be seen by the substantially cleaner curves
obtained by SynthSeg+ when including volumes from all available
scans, or by the considerably higher number of segmentations
that passed the automated QC. Finally, as opposed to SynthSeg,
SynthSeg+ produces almost identical results when we evaluate it
exclusively on scans of very low resolution (i.e., with slice spacing
above 6.5 mm), which further highlights its robustness against
acquisitions of widely varying quality.

Discussion

Here, we present SynthSeg+, a segmentation suite for large-
scale analysis of highly heterogeneous clinical brain MRI scans.
The proposed method leverages a deep learning architecture,
where state-of-the-art domain-agnostic CNNs perform the target
segmentation task in a hierarchical fashion. As a result, SynthSeg+
exhibits an unparalleled robustness to clinical artifacts and can

PNAS 2023 Vol. 120 No. 9 e2216399120 https://doi.org/10.1073/pnas.2216399120 5 of 10
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Fig. 5. Volume trajectories obtained by processing 14,752 heterogeneous clinical scans with SynthSeg+. For each brain region, the value of N indicates the
number of volumes considered to build the plot, i.e., the number of segmentations that passed the automated QC for this structure. We emphasize that the
obtained results are remarkably similar to recent studies, which exclusively employed scans of much higher quality (39–41).

accurately segment clinical data of any MR contrast and resolu-
tion, including scans with poor tissue contrast and low signal-
to-noise ratio. Moreover, the two proof-of-concept volumetric
studies and the quantitative aging experiment (SI Appendix, Ap-
pendix 4) have demonstrated the robustness of the proposed
method against a wide range of subject populations. Finally, our
highly precise QC enables us to automatically discard the few
erroneous segmentations from subsequent analyzes.

The performance of our hierarchical modules is demonstrated
throughout all experiments, where it considerably improves the
robustness of SynthSeg to clinical artifacts, both quantitatively
(higher Dice scores in the first experiment), and qualitatively
(far fewer outliers in the aging study). Further ablation studies
show that using a denoiser D to correct the mistakes of S1 leads
to a consistent improvement over cascaded networks. Moreover,
SynthSeg+ substantially outperforms state-of-the-art denoising
networks for postprocessing (28), which is explained by two
reasons. First, these methods do not have access to the input
scans and may thus produce segmentations that deviate from
the original anatomy. In contrast, we predict final segmentations
by exploiting both the input test scans and prior information
given by D. Second, denoiser predictions are often excessively
smooth. Here, we mitigate this issue by using the outputs of
D as robust priors for S2, which effectively learns to refine

the smooth boundaries given by the denoiser. However, Fig. 2
illustrates that the predictions of SynthSeg+ may still exhibit
slight smoothing effects. While the resolution studies show that
this residual smoothness leads to a marginally lower accuracy
than SynthSeg for scans at high resolution (relatively uncommon
in clinical settings), we consider this a minor limitation compared
to the considerable gain in robustness of the proposed approach.

SynthSeg+ is also able to perform volumetric cortex parcel-
lation of clinical scans in the wild: only FreeSurfer (3) and
FastSurfer (42) could tackle this problem automatically, but they
only apply to 1 mm T1-weighted scans. The high accuracy of our
parcellation module is demonstrated by evaluating it on high-
quality scans, for which it yields competitive scores with state-
of-the-art supervised CNNs, either tested on the same scans, like
the T1-baseline (19) or on different datasets (42). Remarkably,
SynthSeg+ maintains this high level of performance across all
tested domains, including the highly heterogeneous clinical
acquisitions. We emphasize that this outstanding generalization
ability can difficultly be matched by supervised CNNs, which
would need to be retrained on every single domain using costly
training labeled data.

The results have also shown that the proposed regression-based
QC strategy accurately detects the few cases where SynthSeg+
fails, which are mainly due to acquisitions of poor quality
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Fig. 6. Cortical and hippocampal volume trajectories obtained by SynthSeg and SynthSeg+ in three different scenarios: using all available scans, keeping only
those which passed the automated QC and simulating the case where we only have access to scans acquired at low resolution (here with a slice thickness of
more than 6.5 mm). We highlight that SynthSeg+ is much more robust than SynthSeg since it outputs far fewer outliers, and accurately detects atrophy patterns
even for scans at very low resolutions.

(e.g., very low SNR, or insufficient coverage of the brain).
Interestingly, our method produces slightly better results than
the tested state-of-the-art approach (31), despite the fact that
the latter was shown to outperform strategies based on direct
regression in a simpler problem (3D segmentation with only one
label). This outcome can be explained by the fact that variational
autoencoders (which are at the core of ref. 31) have been shown in
our experiments to produce excessive smoothness when dealing
with whole-brain segmentations. We also emphasize that other
methods for automated QC were not evaluated in this work since
they rely on lengthy iterative processes (29, 32), which make them
impractical to use on large scale clinical datasets.

Finally, we have demonstrated the true potential of SynthSeg+
on more than 14,000 uncurated clinical scans, where it accurately
replicates volume trajectories observed on data of much higher
quality. This result suggests that SynthSeg+ can be used to
investigate other population effects on huge amounts of clinical
data, which will considerably increase the statistical power of
the current research studies. Moreover, SynthSeg+ also unlocks
other potential applications, such as the analysis of scans acquired
with the promising portable low-field MRI scanners, or the
introduction of quantitative morphometry in the clinic for
diagnosing and monitoring diseases.

We emphasize that SynthSeg+ can be run “out of the box”
on brain MRI scans of any contrast and resolution, which
has three main benefits. First, it greatly facilitates the use
of our method since it eliminates the need for retraining
and, thus, the associated requirements in terms of labeled
data, deep-learning expertise, and hardware. Second, relying
on a single model considerably improves the reproducibility
of the results, since no hyperparameter tuning is required.
And finally, it makes SynthSeg+ easier to disseminate, which
is done here by distributing it with the publicly available package
FreeSurfer.

Future work will first focus on surface placement to estimate
cortical thickness, which is a powerful biomarker for the
progression of many neuropsychiatric disorders. While this task
may be challenging when analyzing low-resolution clinical scans
(since the slice thickness can be locally larger than cortical folds),
we believe that measurements can still be extracted in regions
where the surface is orthogonal to the acquisition direction.

Then, we will seek to extend SynthSeg+ to analyze multimodal
data. So far, we have dealt with multimodal acquisitions by
processing all channels separately, but combining them into
a common framework could improve accuracy. Finally, even
though the aging clinical study has demonstrated the applicability
of SynthSeg+ to large cohorts with high morphological variability,
future work will aim to precisely quantify performance against
various pathologies.

Overall, by enabling robust and reproducible analysis of
heterogeneous clinical brain MRI scans, we believe that the
present work will enable the development of clinical neuroimag-
ing studies with sample sizes considerably higher than those
found in research, which has the potential to revolutionize our
understanding of the healthy and diseased human brain.

Materials and Methods

Training Datasets and Population Robustness. The proposed method
is trained only on synthetic data (no real images) generated from a set
of brain segmentation maps. Here, we use 1,020 maps obtained from
1 mm T1-weighted scans: 20 from the OASIS database (43), 500 from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (7), and 500 from
the Human Connectome Project (HCP) (44). These segmentations contain
labels for 31 brain structures, obtained manually (OASIS) or with FreeSurfer
(HCP and ADNI) (45). Moreover, we complement each map with 11
automated labels for extra-cerebral regions (46) and 68 FreeSurfer labels
for cortex parcellation. We emphasize that, while HCP subjects are young
and healthy, ADNI contains aging and diseased subjects, who frequently
exhibit large atrophy and white matter lesions. Thus, using such a di-
verse population enables us to build robustness across a wide range
of morphologies.

Brain MRI Test Datasets. Our experiments feature three datasets. The first
one comprises 15,346 clinical scans from the PACS of Massachusetts General
Hospital (see detailed information in SI Appendix, Appendix 1). Briefly, these
scans are from 1,367 MRI sessions of distinct subjects with memory complaints,
between 18 and 90 years of age: 749 males (age = 62.2 ± 15.2) and 618
females (age = 58.1± 17.2). Importantly, all scans are uncurated, and span
a huge range of MR contrasts (T1-weighted, T2-weighted, FLAIR, diffusion MRI,
etc.). Acquisitions are isotropic (11%) and anisotropic in axial (81%), coronal (4%),
and sagittal (4%) orientations. The resolution of isotropic scans varies between
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0.3 and 4.7 mm. For anisotropic scans, in-plane resolution ranges between 0.2
and 4.7 mm, while slice spacing varies between 0.8 and 10.5 mm. Ground
truths for whole-brain segmentation, cortex parcellation, and ICV estimation
were obtained for a subset of scans as follows. First, we isolated all sessions
(N = 62) with 1 mm isotropic T1-weighted scans. These were then labeled using
FreeSurfer (3), and the obtained segmentations were rigidly registered (47) to the
other scans of the corresponding sessions. Note that we also obtained ICVs for all
these scans by reporting the estimations given by FreeSurfer on the T1-weighted
scans. Finally, we conducted a visual QC on the results and removed all scans
where even a small segmentation error could be seen, either due to FreeSurfer
or registration errors (138 scans) and/or poor image quality (94 cases with, e.g.,
insufficient coverage of the brain, wrong organ). In total, this provided us with
ground truth segmentations for 520 scans, that we split between validation
(20), and testing (500). All the other 14,752 scans were held-out for indirect
evaluation.

The second dataset consists of 66 scans from three subdatasets: 20 T1-
weighted scans from OASIS database (43); 18 subjects imaged twice with T2-
weighted acquisitions and a sequence typically used in deep brain stimulation
(DBS) (48); and 8 proton density scans (49). All scans are at 1 mm isotropic
resolution and are available with manual or semiautomated segmentations for
31 brain regions (45). Labels for cortex parcellation were obtained by running
FreeSurfer on the T1-weighted scans or on companion 1 mm T1-weighted
acquisitions for the T2-weighted, DBS, and proton density scans.

The last dataset is another subset of 100 scans from ADNI (7), including 47
males and 53 females, aged 72.9± 7.6 y. Half of the subjects are healthy, while
the others are diagnosed with Alzheimer’s Disease. All subjects are imaged
with two acquisitions: 1 mm isotropic T1-weighted scans and FLAIR scans at
5 mm axial resolution. Volumetric measurements for individual regions and
ICVs are retrieved for all subjects by processing the T1-weighted scans with
FreeSurfer.

Deep Hierarchical Segmentation. The proposed architecture relies on four
CNN modules, which are designed to split the target segmentation task into
easier intermediate operations. Specifically, a first segmenter S1 is trained
to produce initial segmentations of four coarse labels (cerebral white matter,
cerebral gray matter, cerebrospinal fluid, and cerebellum). These labels group
brain regions of similar tissue types and intensities and are thus easier to
discriminate than individual structures. The output ofS1 is then fed to a denoising
network D (28), which seeks to correct potential topological inconsistencies
and larger segmentation mistakes that sometimes occur for scans with poor
tissue contrast or low signal-to-noise ratio. Final whole-brain segmentations are
obtained by a second segmenter S2, which takes as inputs the image and the
corrected preliminary segmentations. As such, S2 learns to segment the 31
individual target regions by using the coarse tissue segmentations as priors.
We note that S2 is given the opportunity to refine the boundaries produced
by D, which are sometimes excessively smooth. Finally, the segmentations
of S2 are completed by passing them to a fourth network S3, which is
trained to parcellate the left and right cortex labels from S2 into 68 different
substructures.

Training of the Segmenters. The three segmentation CNNs are trained
separately with extremely diverse unimodal synthetic data created from
anatomical segmentation maps by using a generative model inspired by
Bayesian segmentation. Crucially, in order to train domain-agnostic networks, we
adopt the domain randomization strategy introduced in our previous work (21).
Specifically, we draw all the parameters governing the generative model at each
minibatch from uniform priors of very large range. Hence, the segmenters are
exposed to vastly changing examples in terms of shape, MR contrast, resolution,
artifacts (bias field, noise), and even morphology (due to population variability
in the training set). As a result, the segmenters are forced to learn contrast and
resolution-agnostic features, which enables them to be applied to brain MRI
scans of any domain, without requiring any retraining.

Briefly, this generative model requires only a set of 1 mm isotropic label maps
as inputs, and synthesizes training examples as follows. At each minibatch, we
randomly select one of the training maps and geometrically augment it with a
random spatial transform (19). Next, a preliminary image is built by sampling

a randomized Gaussian mixture model conditionally on the deformed label
map (50). The resulting image is then obtained by consecutively applying a
random bias field, noise injection, intensity rescaling between 0 and 1, and a
random voxel-wise exponentiation (19). In turn, low-resolution and PV effects are
modeled with Gaussian blurring and subsampling at random low resolution.
Finally, training pairs are obtained by defining the deformed label map as
ground truth and resampling the low-resolution images back to the 1 mm
isotropic grid, such that the downstream segmenters are trained to operate at
high resolution (51).

Training of the Denoiser. State-of-the-art methods for denoising and topo-
logical correction rely mainly on supervised CNNs that are trained to recover
ground truth segmentations from artificially corrupted versions of the same
maps (18, 28, 52). However, the strategies used to corrupt the input
segmentations are often handcrafted (random erosion and dilation, swapping
of labels, etc.) and thus do not accurately capture the type of errors made by
the segmentation method to correct. In order to train D with examples that are
representative ofS1 errors, we instead degrade real images and feed them to the
trained (and frozen) S1. D is then trained to map the outputs of S1 back to their
ground truth. During training, images are degraded on the fly with operations
similar to the training of segmenters: spatial deformation, bias field, voxel-wise
exponentiation, simulation of low resolution, and noise injection. However, the
ranges of the parameters controlling these corruptions are made considerably
wider than for the training of segmenters, in order to more frequently obtain
erroneous segmentations from S1 and thus to enrich the training data.

Automated QC Module. While the proposed architecture considerably
improves robustness, it remains important to detect potential erroneous
predictions, especially when segmenting clinical scans of varying quality. Hence,
we introduce another module for automated failure detection. More precisely, we
train a regressing networkR to predict “performance scores” for 10 representative
regions of interest (white matter, cortex, lateral ventricle, cerebellum, thalamus,
hippocampus, amygdala, pallidum, putamen, brainstem), based solely on the
segmentations produced by S2. Here, the performance scores aim to reflect Dice
scores that would have been obtained if the input scans were available with
associated ground truths (53). The segmentation of a region is then classified
as failed if it obtains a predicted Dice score lower than 0.65 (a value chosen
based on the validation set). In practice, R is trained with the same method asD,
where we degrade real images, segment them with S2, and feed the obtained
segmentations to R.

Network Architectures. All segmenters use the same architecture as Synth-
Seg (50), which is based on a 3D UNet (14). Briefly, it comprises five levels, each
consisting of two convolutions, a batch normalization, and either a max-pooling
(contracting path), or upsampling operation (expanding path). Every convolution
employs a 3×3×3 kernel and an Exponential Linear Unit activation (54), except
for the last layer, which uses a softmax. The first layer has 24 features, while this
number is doubled after each max-pooling and halved after each upsampling.
Finally, following the UNet architecture, we use skip connections across the
contracting and expanding paths.

The denoiser uses a similar, but slightly lighter architecture: it only has one
convolution per level and keeps a constant number of 16 features. Moreover, we
suppress the skip connections between the top two levels to find a compromise
between UNets, where top-level skip connections can potentially reintroduce
erroneous features at late stages of the network; and auto-encoders, with
excessive bottleneck-induced smoothness.

Finally, the regression network follows the same architecture as the encoder
of the segmentation CNNs, except that it uses 5×5×5 convolutions as in ref.
32, which greatly improved the results on the validation set. Regression scores
are then retrieved by appending two more convolutions of 10 features (one for
each QC region) and a global max-pooling.

Learning. The three segmenters and the denoiser are trained to minimize
the average soft Dice loss (13). If Yk represents the soft prediction for label
k ∈ 1, ..., K, and Tk is its associated ground truth, this loss is given by
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Lossseg = 1−
1
K

K∑
k=1

2×
∑

x,y,z Yk(x, y, z)Tk(x, y, z)∑
x,y,z Yk(x, y, z)2 + Tk(x, y, z)2

. [1]

The regressor is trained using a sum of square loss function. All networks are
trained separately with the Adam optimizer (55) using a learning rate of 10−5.
We train each module until convergence, which approximately takes 300,000
steps for the segmenters (seven days on a Nvidia RTX6000) and 50,000 steps
for the regressor (one day on the same GPU). All models are implemented in
Keras (56) with a Tensorflow backend (57).

Inference. Test scans are automatically resampled to 1 mm isotropic reso-
lution, and their intensities are normalized between 0 and 1. The trained
model then predicts soft probabilistic segmentations for all target labels.
Finally, hard segmentations are obtained by applying an argmax opera-
tion on these soft predictions. Overall, the whole inference pipeline takes
between 12 and 16 s per scan on a RTX6000 GPU. We emphasize that
when presented with multimodal data, SynthSeg+ segments each channel
separately.

Individual Volumes and ICV Estimation. Volumes of individual brain
regions are estimated by summing all the values of the corresponding soft
predictions and multiplying the result by the volume of a voxel (1 mm3). Note
that summing soft probabilities rather than hard segmentations enables us
to account for segmentation uncertainties and, to a certain extent, for partial
voluming (12). In turn, ICVs are estimated for every subject by summing the
predicted volumes of all structures, including the intracranial cerebro-spinal
fluid.

Dice Scores. Parts of the evaluations use hard Dice scores, which measure the
overlap between the same region across two hard segmentations. If X and Y are
corresponding structures in two segmentations, their hard Dice score is given by

Dice(X, Y) = 2×
|X ∩ Y|
|X|+ |Y|

, [2]

where | · | represents the cardinality of a set. Therefore, Dice scores vary between
0 (no overlap) and 1 (perfect matching).

Cohen’s d. In this work, effect sizes in hippocampal volume between control
and AD populations are measured with Cohen’s d (38). IfµC , s2

C andµAD, s2
AD

designate the sample means and variances of two volume populations of size
nC and nAD, where C stands for Controls, Cohen’s d is given by

d =
|µC − µAD|

s
, s =

√
(nC − 1)s2

C + (nAD − 1)s2
AD

nC + nAD − 2
. [3]

Cohen’s d below 0.2 are considered to be small, whereas values above 0.8
indicate large effect sizes (38).

Regression Model for Aging. Our aging model includes B-splines with 10
equally spaced knots for age, linear terms for slice spacing in each acquisition
direction (i.e., sagittal, coronal, and axial) and a bias for gender. We then fit this
model numerically by minimizing the sum of squares of the residuals with the
L-BFGS-B method (58).

Data, Materials, and Software Availability. The code is available at https://
github.com/BBillot/SynthSeg, and the trained models for SynthSeg+ and
SynthSeg are distributed with the publicly available neuroimaging package
FreeSurfer (3). The clinical dataset taken from the Massachusetts General
Hospital is strictly private and cannot be shared. The remaining datasets used
here are taken from databases that were made publicly available by their owners:
ADNI (https://adni.loni.usc.edu), HCP (https://www.humanconnectome.org),
OASIS (https://www.oasis-brains.org).
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