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A B S T R A C T

Large scale digital data, which are becoming more prevalent, offer the potential to alleviate reproducibility
concerns in psychology research findings. However, large scale digital data are not sufficient in and of
themselves, thus necessitating the need for the development of machine learning (ML) pipelines that are
capable of handling high dimensional datasets at scale. Such ML-based methodologies enable the analysis of
complex relationships, which allows for the consideration of complicated demographics, a factor that is likely to
play a role in the generalizability of research. We introduce a novel ML pipeline and demonstrate its potential
on a large-scale digital dataset, Sea Hero Quest, a mobile game with data from nearly 770,000 players (ages
19 to 70, men N = 404,455, women N = 367,173). We analyzed how demographics are related to self-reported
navigation ability using exploratory analysis, supervised and unsupervised learning. The results suggest that
gender is the most important demographic factor in predicting self-reported navigation ability, followed by
daily commuting time, age, and education, such that men (compared to women), long commuters (compared
to those whose commuting time is shorter than 1 h), and older people with tertiary education (compared to
younger people with secondary education) tended to evaluate themselves as better navigators. The large-scale
dataset and ML pipeline capture influential factors, such as daily commuting time and education level, which
have often been overlooked and are difficult to investigate with in-laboratory studies that use limited samples
and traditional analytical techniques.
. Introduction

.1. The reproducibility crisis in psychology

Over the past decade, one critical question in the field of psychology
esearch is the reproducibility of research findings (aka. the repro-
ucibility crisis), such that findings reported in one study cannot be
eplicated using an independent group of subjects (Camerer et al., 2018;
immons, Nelson, & Simonsohn, 2011). Various methods have been
roposed to solve the reproducibility crisis, including conducting re-
trained experimental designs (Ioannidis, 2005; Simmons et al., 2011),
enerating and sharing registered reports (Van’t Veer & Giner-Sorolla,
016), and archiving unpublished data in open databases (Schooler,
011). However, a concern is that these methods simply narrow down
he generalizability of research findings to a particular group of people.

Subjects in most psychology studies have traditionally been drawn
rom small and specialized samples — usually composed of college
tudents in their early 20s. Moreover, sample source itself could be
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a possible explanation for failure to reproduce psychological findings.
This is because samples may differ in their behaviors due to different
demographic backgrounds (e.g., age, gender, education levels), which
limits the generalizability of research findings. This calls for data at
scale with well-representative samples that represent the diverse de-
mographics of the human population (Ioannidis, 2005; Simmons et al.,
2011).

1.2. Utilizing large-scale digital data as a solution to the reproducibility
crisis

Digital data regarding people’s behavior collected online through
platforms such as Amazon Mechanical Turk, social media, or phone-
based games are becoming more and more prevalent in the field of
psychology research, especially during the pandemic when conducting
in-person experiments has been challenging. Digital data usually have
very large sample sizes that could result in thousands or even millions
of data points, and also enable us to more easily sample from diverse
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Table 1
Summary table of the related work.

Related work Research topic Evidence for Sample size Limitation

Berteau-Pavy, Park, and Raber
(2007), Coughlan, Laczó, Hort,
Minihane, and Hornberger
(2018), Kunz et al. (2015) and
Puthusseryppady, Morrissey,
Spiers, Patel, and Hornberger
(2022)

Navigation Ability &
Alzheimer’s Disease

The potential of navigation ability
as a cognitive fingerprint to
detect incipient Alzheimer’s
disease

N = 15–115 Small sample size
Limited behavioral measures

Li and Klippel (2016), Montello
(2005), Nazareth, Huang, Voyer,
and Newcombe (2019),
Pagkratidou, Galati, and
Avraamides (2020), Weisberg and
Newcombe (2018) and Wolbers
and Hegarty (2010)

Multifaceted Navigation
Ability

Different tasks measure different
aspects of navigation ability

Various across
20–100

Small sample sizes
Lack of standard comprehensive
measurement

Donald Heth, Cornell, and Flood
(2002), Epstein, Higgins, and
Thompson-Schill (2005), Hegarty,
Montello, Richardson, Ishikawa,
and Lovelace (2006), Hegarty,
Richardson, Montello, Lovelace,
and Subbiah (2002), Hund and
Padgitt (2010), Meneghetti,
Borella, Pastore, and De Beni
(2014), Pazzaglia, Meneghetti,
Labate, and Ronconi (2016) and
van der Ham, van der Kuil, and
Claessen (2021)

Self-reported
Navigation Ability

Small to moderate associations
with performance in objective
navigation behavior tasks

Various across
20–7150

Limited demographics information

Limited connections to behaviors

Lester, Moffat, Wiener, Barnes,
and Wolbers (2017), Nazareth
et al. (2019) and Spiers, Coutrot,
and Hornberger (2021)

Group differences in
Navigation

Robust gender differences and
aging deficits in navigation ability

Various across
20–250

Limited sample sizes
Limited demographics analysis

Coughlan et al. (2019), Coutrot
et al. (2022, 2018) and Spiers
et al. (2021)

Sea Hero Quest:
Population level
navigation ability

A population-level benchmark
performance in terms of
mobile-based navigation tasks

Over 500,000 Limited self-reports and
demographics analysis

This table lists important studies on individual differences in navigation ability and illustrates limitations of these previous studies, including relatively small sample sizes, inconsistent
measures, and insufficient demographic reports.
populations (e.g., in terms of age, gender, race/ethnicity, education,
socioeconomic status, handedness, etc.).

1.3. Incorporating demographic information in large scale digital data to
systematically interpret self-report measures

Self-report is a common method in psychology research in which
people are asked to directly report their feelings, attitudes, beliefs,
or behaviors (Jupp, 2006). It can be carried out in multiple forms,
including open and closed-ended questions, rating scales, interviews,
etc. Self-report is more efficient than physiological and behavioral
measurements, which are expensive in terms of both time and labor
cost. It is an economic approach to prescreening targeted samples and
in prognosing neurological disorders (e.g., Blazer, Hays, Fillenbaum,
& Gold, 1997; Jonker, Launer, Hooijer, & Lindeboom, 1996; Taylor,
Miller, & Tinklenberg, 1992). However, self-report measurements have
been susceptible to concerns about validity – the extent to which
a measure is indeed measuring what it claims to measure – as re-
spondents may underestimate or overestimate their behaviors. Such
mischaracterization could be intentional (Jupp, 2006) or could emerge
from subconscious social stereotypes related to their demographic back-
grounds (Reychav et al., 2019; Slavin et al., 2010; van der Ham et al.,
2021; Wasef et al., 2021). In the latter situation, the reproducibility
and generalizability of previous findings based on small samples can
be examined using large datasets in which respondents represent a
spectrum of demographic characteristics. This raises a new question as
to how to thoroughly analyze the relationship between demographic
information and human behaviors in large scale digital datasets.

Here, we propose a machine learning pipeline for analyzing de-
mographic relevance in large-scale digital self-report data. We tested
the pipeline with a large dataset (around 770,000 global users’ data)
2

collected from a phone-based game – Sea Hero Quest – in which people
play navigation games in virtual environments, report their demo-
graphics, and evaluate their own navigation abilities (Coutrot et al.,
2022, 2018; Spiers et al., 2021). One goal of Sea Hero Quest is to
set a population-level benchmark for dementia research. In the study,
people’s self-evaluations of their navigation abilities are based on a
Likert-scale measurement, which is one of the most common types
of rating scales in self-report measurement. Further, this ML pipeline
could easily be generalized to detect behavior patterns in large scale
self-report data in a wide variety of psychology research studies in the
future.

2. Related work

Spatial navigation is a critical cognitive ability which enables people
to represent their environments so as to reach target locations effi-
ciently without getting lost or experiencing anxiety. Previous literature
has emphasized the potential of navigation ability as a cognitive
fingerprint to detect incipient Alzheimer’s disease (Berteau-Pavy et al.,
2007; Coughlan et al., 2019, 2018; Kunz et al., 2015; Puthusseryppady
et al., 2022). Nevertheless, we still do not have a standard compre-
hensive task battery to measure individual navigation ability. Table 1
summarizes previous literature showing (1) the relations between nav-
igation ability and Alzhemier’s disease; (2) self-reports as a promising
efficient measure given the limitations of the objective measures;
(3) previous research on demographics and navigation ability; and
(4) the Sea Hero Quest project, which took the initiative to develop
a population benchmark of the navigation ability. In the table, we also
emphasize the limitations of the current approaches to each research
topic. Specifically, objective measures of navigation ability are difficult
to acquire on a large scale. In contrast, self-report measures are easier
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to acquire, but may be less reliable. Further, the relationship between
demographic information such as age, gender, etc. and both objective
and self-report measures has only been studied with relatively small
sample sizes. We elaborate on each of these points and the details of
the table in the following sections.

2.1. The lack of efficient measures to study spatial navigation ability

Navigation ability is usually measured using various paradigms or
metrics, such as the ability to memorize landmarks, learn routes, form
an accurate and coherent mental representation of the whole environ-
ment (i.e., cognitive map), estimate directions and distances, and give
efficient directions (Hegarty, Burte, & Boone, 2018; Montello, 2005;
Weisberg & Newcombe, 2018; Wolbers & Hegarty, 2010). People’s
performance also varies in different environments and with different
task goals (Li & Klippel, 2016; Nazareth et al., 2019; Pagkratidou et al.,
2020). It is time consuming and labor intensive to collect valid data
to evaluate healthy participants’ navigation ability on a large enough
scale that could illustrate the distribution of abilities across age and
other demographic information (e.g., home environments, commuting
time, etc.).

In contrast, self-reported navigation, as an easier and more econom-
ical measure, has shown small to moderate associations with perfor-
mance in objective navigation tasks (Donald Heth et al., 2002; Epstein
et al., 2005; Hegarty et al., 2002; Hund & Padgitt, 2010; Meneghetti
et al., 2014; Pazzaglia et al., 2016), demonstrating its potential to
be used as a powerful prescreening tool for detecting neurological
disorders that have navigation impairments. However, the relationship
between self-reported navigation ability and demographic information
is unclear, which calls for more research on generalizing findings based
on small samples to the general public with various demographic
backgrounds.

2.2. Demographics and navigation ability

Previous studies have found solid evidence supporting gender dif-
ferences and aging deficits in navigation ability at a behavioral level
(Lester et al., 2017; Nazareth et al., 2019; Spiers et al., 2021). Gender
and age effects have been discussed in self-reported measures as well
(e.g., Hegarty et al., 2006; van der Ham et al., 2021). However, these
studies used relatively small samples and as a consequence could
not take advantage of modeling methods targeting a large dataset
(e.g., clustering or random forest). Using a large dataset with a ML-
based analyses pipeline enables us to investigate whether people’s
self-evaluations match the findings of those in-laboratory empirical
studies. Preliminary evidence based on over 7000 participants in an
online study showed that older men tended to overestimate their
navigation ability as measured in online video-based navigation tasks
(van der Ham et al., 2021). Although that study captured the influence
of gender and age on self-reported navigation abilities reasonably
well, we propose here that large-scale digital data could advance
our knowledge further by considering other demographic information
(e.g., education levels, home environments, etc.) with machine learning
tools.

The Sea Hero Quest dataset (SHQ) is composed of both large-
scale self-reported navigation ability data and multidimensional demo-
graphic data (more details below) in addition to data from multi-level
objective navigation task performance (which will not be considered
in this report). Therefore, the large SHQ dataset enables us to test for
relationships between people’s self-reported navigation ability and their
demographic information more systematically than previous studies.
More importantly, we demonstrated our ML-pipeline via the analyses,
which could be generalized to analyze other large-scale digital data in

future psychology research. o

3

3. Methodology

The first step in our ML-pipeline2 was to conduct a correlation
analysis to explore the relationships between the observed variables
in the Sea Hero Quest sample. These were age, gender, handedness,
education level, home environment (i.e., rural (level 1), city (level-
3) or in-between/mixed (level 2)), average daily sleep hours, average
daily commute time, and self-reported navigation ability. Second, we
performed factor analysis to detect potential latent variables underly-
ing our observed variables. Third, we implemented an unsupervised
method (k-means clustering) to detect subpopulations in the sample,
based on the demographic information. Fourth, we implemented a
chi-squared independence test, which allowed us to determine how
self-reported navigation ability varies at each rating level, and across
detected subpopulations. These relationships were used to form data-
driven theories. Fifth, we used a supervised learning method (ordinal
logistic regression) to detect relationships between demographics and
self-reported navigation ability. Lastly, we implemented another su-
pervised learning method, complementing our parametric model with
a non-parametric model (random forest regression), which yielded
consistent results with our regression analysis. See Fig. 1.

We conducted our analyses on Google’s cloud server using Colab
notebooks with 2.3 GHz CPU Frequency, 2 CPU Cores (Haswell), and
12 GB RAM.

3.1. Data description

We started with the full raw dataset which included approximately
4 million users (Coughlan et al., 2019). Because demographic and self-
reported navigation ability questions were all optional in the game, not
every user answered all questions. Accordingly, we only included users
who responded to all questions (except for the countries, which is out of
the scope of this study, see more in Coutrot et al., 2018). Then, based on
previous research, we excluded people who reported sleeping less than
3 h or over 12 h3 every day, reported being younger than 19 years old
or over 70 years old,4 did not identify as a male or female, or reported
to have ‘‘unspecified’’ education (see Fig. 2). Our following analyses are
based on 771,628 users (52.4% male).

Fig. 3 illustrates the distributions of self-reported navigation ability
and of all demographic variables in the sample. Around 90% of partici-
pants were right-handed and the gender ratio was around 0.5, which is
representative of the world population. Most of the participants were
in their early twenties and 71.8% participants had a tertiary level of
education (i.e., college or university), indicating that our sample was
relatively younger and had higher education levels than the world pop-
ulation. Note that most participants reported ‘‘good’’ for self-reported
navigation ability (54.5%) and that only 13.6% participants reported
being ‘‘bad’’ or ‘‘very bad’’ at navigation.

3.2. Exploratory data analyses

3.2.1. Correlation analysis
We first looked at bivariate Spearman correlations among all vari-

ables (see Fig. 4). Correlations among most variables were lower than
.1, suggesting a low probability of latent factors (See more in the Factor
Analyses section). However, age and sleep, age and daily commuting

2 It is worth noting that this is not a fully automatic ML-pipeline, but rather
sequence of ML analytics.
3 Normal light sleepers still sleep over 3 h per day. People who reported

leeping over 9 h per day are considered as long sleepers and rarely will people
leep over 12 h every day (Grandner & Drummond, 2007; Patel, Malhotra,
hite, Gottlieb, & Hu, 2006). Thus, we filtered out data by people who

eported sleeping less than 3 h or over 12 h.
4 Based on previous research on Sea Hero Quest (Coughlan et al., 2018),

eople who reported being younger than 19 years old or older than 70 years
ld showed abnormal behaviors.



Y. Cheng, C. He, M. Hegarty et al. Machine Learning with Applications 10 (2022) 100419

l
w
s

Fig. 1. The proposed pipeline. Note: Dashed boxes indicate data modules, solid boxes indicate processing modules.
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time, as well as gender and commuting time were significantly corre-
lated with each other (rs are above .1, ps < .001) and male participants
tended to report better navigation ability (r = .24, p < .001). With a
arge sample size, even small correlations will be significant; therefore,
e did not consider effect sizes below 0.1, which were judged to be too

mall to be meaningful.
4

.2.2. Factor analysis

We first conducted a Bartlett Sphericity Chi Square Test on all
ndependent variables to test whether there was a pattern among the
ndependent variables. The test result was significant (Score = 109 858,
< .001), indicating that there was such a pattern. Note that in this

and all following analyses, we did not include self-reported navigation
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Fig. 2. Flowchart of the data filtering for the Sea Hero Quest self-reported database.

ability as a factor, it was only part of the analysis when it was used as a
dependent variable in logistic regression and random forest regression.

Next, we conducted a Kaiser–Mayer–Olkin (KMO) Test to test
whether there was sufficient variance in the dataset to conduct a factor
analysis. The KMO score was .508, which is smaller than the criterion
of .6 (Kaiser, 1974), indicating there was not sufficient variance for
factor analyses.
5

Thus, although the Bartlett Sphericity Chi Square Test showed that
there was a pattern among the independent variables, there was no la-
tent factor. This finding suggests patterns emerge from the independent
variables alone, which can be tested by cluster analyses.

3.2.3. Clustering

Subpopulations. To determine whether there were subpopulations in
the dataset, we conducted k-means clustering analyses, based on all
of the demographic variables except self-reported ability. K-means
clustering – partitioning observations into k clusters where each ob-
servation is assigned to one cluster with the nearest mean – is one of
the simplest and most computationally efficient partitioning methods
(Forgy, 1965; Lloyd, 1982). It has been commonly used for partitioning
people into subpopulations based on their demographics (e.g., customer
segmentation in marketing to construct customer profiles) in many
industries (e.g., Kansal, Bahuguna, Singh, & Choudhury, 2018; Namvar,
Gholamian, & KhakAbi, 2010; Wu, Yau, Ong, & Chong, 2021).

The k-means clustering was conducted using the Python sklearn
package. Because k-means clustering uses the Euclidean distance for
measuring object similarities, all variables were first preprocessed by
normalizing to the range between 0 and 1. The initial 4 cluster cen-
troids were selected randomly from the data. The clustering analyses
yielded 4 clusters based on the elbow method, which were then val-
idated with additional methods such as Davies Bouldin score and
Silhouette score to identify the optimal number of clusters. The model
took 2.11 s to run (CPU times: user 2.1 s, system: 27.3 ms).

As shown in Fig. 5, the four clusters (called groups) represent four
subpopulation groups. Group 1 (called ‘‘male long commuter’’) was
composed of males with education levels close to that in the total
sample distribution, and a daily commute of more than 1 h. Group
2 (called ‘‘female tertiary education’’) was composed of females with
tertiary education, and a daily commute close to that in the total
sample distribution. Group 3 (called ‘‘male tertiary education short
commuter’’) was composed of males with tertiary education, and a daily
commute of less than 1 h. Group 4 (called ‘‘secondary education’’) was
composed of people with secondary education, equally representative
of both genders and with a daily commuting time close to that of the
total sample distribution. Further, age, sleep, home environment, and
handedness were evenly distributed across the four groups. These four
subpopulation groups differ in their demographics, especially in terms
of gender, education, and daily commuting time. Thus, we focus on the
interactions between these variables for the ordinal regression analysis.

Subpopulations and Self-Reported Navigation Ability. We then tested
whether self-reported navigation ability varies for people in the differ-
ent subpopulations. First, the average self-reported navigation ability
of each group was significantly different from each of the others (Non-
parametric ANOVA with Conover’s post hoc test and Holm–Bonferroni
Correction, p < 0.001). More specifically, male long commuters re-
ported the best navigation skills, followed by male short commuters
with tertiary education, people with secondary education, and lastly
females with tertiary education (See Fig. 6).

Then, we conducted the chi-square test of independence to test the
frequency distribution of all levels of self-reported navigation skills
among the four subpopulations. This analysis showed that group mem-
bership and self-reported navigation skills were significantly associated
(𝑥2 = 41069.51, p < 0.001). Post-hoc pairwise comparisons revealed that
all groups at all navigation ability levels were significantly different
from each other (all p < 6.25e−5, Bonferroni corrected). In other words,
the percentages of people that indicated that their navigation ability
as ‘‘very bad’’, ‘‘bad’’, ‘‘good’’, or ‘‘very good’’ were different across
groups (See Fig. 7). More specifically, male long commuters reported
the highest within-group percentage of ‘‘very good’’ at navigation,
followed by male short commuters with tertiary education, people
with secondary education, females with tertiary education. People with
secondary education reported the highest within-group percentage of
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Fig. 3. Percentages and histograms of all self-reported variables.
Fig. 4. Bivariate spearman correlations between the self-reported variables. Note: All correlations were statistically significant (p < 0.001).
Fig. 5. Subpopulations featured by histograms of seven demographic factors. Male long commuter: Males across both education levels with more than 1 h daily commute. Female
tertiary education: Females with tertiary education that have a wide range of daily commuting times. Males tertiary education short commuter: Males with tertiary education that
commute less than 1 h on a daily basis. Secondary education: Both males and females with secondary education that have a wide range of daily commuting times. The differences
among four groups were mainly driven by gender, education, and commuting time. Age, sleep, home environment, and handedness were evenly distributed for each group.
‘‘good’’ at navigation, followed by females with tertiary education,
male short commuters with tertiary education, male long commuters.
6

Females with tertiary education reported the highest within-group per-
centages of both ‘‘bad’’ and ‘‘very bad’’ at navigation, both followed by
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Table 2
Coefficients of the ordinal linear regression model.

Factors Coeff Effect size z-value p-value

age 0.058 1.06 18.30 <.001
gender 0.851 2.34 100.12 <.001
age:gender 0.071 1.07 15.62 <.001
edu 0.043 1.04 6.11 <.001
gender:edu 0.138 1.15 13.873 <.001
commute 0.324 1.38 66.72 <.001
gender:commute −0.082 0.92 −17.98 <.001
edu:commute −0.137 0.87 −27.98 <.001
left-hand −0.024 0.98 24.11 =.001
sleep 0.055 1.06 −17.54 <.001
city-like 0.32 0.96 0.17 <.001

Fig. 6. Average navigation ability in each subpopulation group. Male long commuter:
Males across both education levels with more than 1 h daily commute. Female tertiary
education: Females with tertiary education that have a wide range of daily commuting
times. Males tertiary education short commuter: Males with tertiary education that
commute less than 1 h on a daily basis. Secondary education: Both males and females
with secondary education that have a wide range of daily commuting times. The dif-
ferences among four groups were mainly driven by gender, education, and commuting
time. Age, sleep, home environment, and handedness were evenly distributed across
the four groups. Note: Standard error was too small due to large sample size to be
visible on these graphs.

people with secondary education, male short commuters with tertiary
education, male long commuters.

Next, we looked into how factors, especially those driving the
clusters (i.e., gender, education, and commuting time), relate to self-
reported navigation ability. Specifically, we conducted a follow-up
analysis, reported in the next Section 3.3 to test the importance of these
factors, and their interactions, in predicting self-reported navigation
ability.

3.3. Ordinal logistic regression

Ordinal logistic regression was utilized here given that (1) the target
variable is in an ordinal scale (2) the regression analysis is computa-
tionally economical and (3) interpretable. It is a good starting point to
examine the relationship between the predictor variables and the target
variable. We utilized the statsmodel package in Python to construct the
ordinal model. The logit link function (distribution) was used and the
fitting method is Broyden–Fletcher–Goldfarb–Shanno (BFGS) which is
broadly used for fitting logistic regression (Kochenderfer & Wheeler,
2019).

Previous literature suggested that there could be interactions of age
by gender (van der Ham et al., 2021; Yu et al., 2021). Thus, these
 p

7

Fig. 7. Percentage of self-reported navigation ability levels in each subpopulation
group. Groups and levels of self-reported navigating skills were significantly related (x2
= 41 069.51, p < 0.001). All groups at all navigation ability levels were significantly
different (all p < 6.25e−5). Bonferroni corrected.

interaction variables, as well as the primary variables of age, gender,
education level, daily commuting time, daily sleep hours, and home
environment were added to the ordinal logistic regression model. Age,
daily commuting time and sleep hours were standardized and centered.
The whole model took 9 min 57 s to run (CPU times: user 6 min 24 s,
system: 3 min 33 s).

The results showed that the factors (including the interactions) all
significantly contributed to the model (𝑋2(14) = 55 302.18, p < .001,
seudo 𝑅2 = .035). The effect sizes in Table 2 can be interpreted as
n odds ratio, which measures how many times the odds of reporting
ood navigation ability increases if the factor increases one standard
eviation (for continuous variables) or changes to another value (for
ategorical variables). If this value is 1, it means the odds do not
hange. For example, the odds of males reporting higher navigation
bility was 2.34 times that of females, which is statistically significant,
(771 614) = 100.12, p < .001. We did not consider effect sizes between
.9–1.1, which were judged to be too small to be meaningful, even
f they were significant, as the significance was likely due to the large
ample size. Thus, we focused on the factors with relatively large effect
izes and left the other interesting trends for future studies.

To sum up, based on the ordinal logistic regression, men who com-
uted longer every day had higher odds of reporting better navigation

bility, see Table 2. In terms of the interactions or the moderators,
he strongest effect was education by gender which suggested that the
ender gap was stronger for people with tertiary education than people
ith secondary education. The second strongest effect was education
y commuting time, which implied that the commuting time effect
as stronger for people with tertiary education than for people with

econdary education.

.4. Random forest regression

To complement our parametric model of ordinal logistic regression,
e also conducted a non-parametric model to examine the importance
f demographic variables in predicting self-reported navigating skills.
e applied the random forest method, which is a meta estimator that

tilizes ensembled decision trees (Breiman, 2001). The random forest
ethod has high computational efficiency because its child estimator

i.e., standard tree growing algorithms) has low computational cost; the
ethod also prevents overfitting by using multiple trees. We chose the

andom forest regression model rather than the classification model
ecause the former could incorporate ordinal information in the de-

endent variable (Janitza, Tutz, & Boulesteix, 2016). We predicted
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Fig. 8. Permutation based feature importance ranking in the random forest regression
analysis.

self-reported navigation ability based on gender, age, sleep, education,
home environment, daily commute, and handedness.

In the analysis, data were randomly split into a 75% training set and
a 25% testing set. The RandomForestRegressor function in the Python
sklearn package was used. We used 100 trees, each tree was built
on bootstrapped samples given equal weight, with the quality of each
split measured based on mean squared error (i.e., variance reduction),
and the node size set to default (i.e., expanded until all leaves are
pure). Features are always randomized at each split and all features are
considered to split a node (i.e., bagged trees) as empirically justified in
Geurts, Ernst, and Wehenkel (2006). For the variable importance mea-
surement, we used permutation-based importance ranking as it gives
more unbiased rankings of the predictors (Altmann, Toloşi, Sander, &
Lengauer, 2010). Permutation importance was computed based on the
held-out test set. The model took 1 min 15 s to run (CPU times: 1 min
14 s, system: 149 ms).

Permutation based feature importance rankings from the random
forest analyses revealed that gender was the most important variable
for predicting self-reported navigating skills, followed by commuting
time, age, average hours of sleep, education levels, home environments,
and handedness (See Fig. 8). This permutation importance ranking
aligns with the results of the logistic regression, further supporting
the order of different demographic variables in predicting self-reported
navigation ability.

4. Conclusions

4.1. Summary of findings

A machine-learning based analysis sequence was used to investi-
gate multidimensional demographic information in a large-scale digital
dataset. The pipeline used a combination of descriptive analyses, ex-
ploratory analyses, parametric supervised learning models (ordinal
regression), non-parametric unsupervised learning models (clustering
methods), and non-parametric supervised learning models (random
forest). The pipeline was tested with data from the mobile game Sea
Hero Quest with approximately 770,000 users. The results identified
gender as the most important demographic factor in predicting self-
reported navigation ability, followed by daily commuting time. The
clustering, regression, and random forest models also identified age,
education, and daily sleep hours as important factors.

4.2. Theoretical contributions

This analysis provides three theoretical contributions to the spatial
navigation domain. First, we found a gender effect on the self-report
measure at a large scale. This result is consistent with findings from

previous studies with relatively small samples regarding individual
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differences in spatial navigation (Hegarty et al., 2022; Montello, 2005;
Weisberg & Newcombe, 2018; Wolbers & Hegarty, 2010).

Second, these analyses provide a new interpretation of the effect of
age on navigation ability. In previous studies, researchers found that
people’s navigation performance decreased with age (Coutrot et al.,
2018; Lester et al., 2017; Yu et al., 2021) but their self-reported
navigation ability increased with age (van der Ham et al., 2021). A few
of these studies showed that the age effect was moderated by gender
(Coutrot et al., 2018; van der Ham et al., 2021; Yu et al., 2021). Our
results also replicated that the age effect on self-reported navigation
ability was moderated by gender, however, the age effect was not
as strong as that in previous research, nor was the interaction. This
suggests interesting future directions for investigating the age effect.

Furthermore, this study highlighted the importance of daily com-
muting time and education level on self-reported navigation ability,
even after adjusting for effects of gender and age. Specifically, we
found that people who commuted longer on a daily basis and people
who had tertiary education tended to report better navigation abil-
ity. Assuming there are associations between self-reported navigation
ability and one’s actual navigation performance, the commuting effect
is consistent with the argument that navigation ability is a ‘‘use-it-
or-lose-it’’ skill (McKinlay, 2016). The main effect of education was
relatively small, but the interaction with gender was substantial. The
education effect is in line with previous neuroscience literature that
emphasizes the importance of education (as part of socioeconomic
status) in brain development (Farah, 2017; Poeppl et al., 2022). It is
clear that to better understand these interesting and novel mediation
and moderation effects, further studies are required.

4.3. Future directions

Although the sample for Sea Hero Quest has covered people with
much more variable demographics than that of typical psychology
samples (often based on college students), our investigation has shown
that it is still not representative of the world population. One limitation
is that a large proportion of subjects were in their 20 s and had
tertiary education. In addition, playing Sea Hero Quest requires people
to have access to smartphones and the internet. The sample is likely
not representative of the world population partially due to the fact that
such digital devices are not accessible to everyone equally. To make
the ML pipeline more generalizable, more representative population-
level data would be required in future research. However, acquiring a
large-scale digital dataset that is representative of the world population
would be challenging for the reason suggested above. Indeed, these
could be common issues for other large-scale digital data used in
future research in psychology. Our results highlight the importance of
analyzing confounds driven by the demographics of the participants in
future large datasets analyses.

Second, although previous research has demonstrated the predictive
power of self-reported navigation ability on objective navigation ability
(Hegarty et al., 2002), these measures are far from being equivalent.
Specifically, self-reported navigation ability is only moderately corre-
lated with performance in navigation tasks, such as retracing a route
taken previously, learning the layout of new places from different views
and navigation experiences, and estimating directions and distances
to known locations (Donald Heth et al., 2002; Epstein et al., 2005;
Hund & Padgitt, 2010; Meneghetti et al., 2014; Pazzaglia et al., 2016).
Thus, objective measurements are still necessary and can continue
to help to evaluate the validity of self-reports. Comparing objective
measures and self-reports with large samples such as this might help
to identify potential subconscious biases in self-reports that are related
to their demographic backgrounds. Further, if a link between objective
measures and self-reports could be established, using self-reports could
provide an efficient prognosis for people with neurological disorders
that have navigation impairments.

Third, preliminary evidence has suggested that individual task per-

formance in Sea Hero Quest is predictive of one’s navigation ability in
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real life (Coutrot et al., 2019), but more work needs to be done to paint
a full picture, including participants’ demographics.

In the future, pretrained models from the Sea Hero Quest dataset
could be used to improve prediction accuracy for psychology studies
with smaller samples. In that case, psychologists who study similar
questions could more systematically approach their findings. This ap-
proach constitutes a useful addition to a growing set of methods which
may collectively help alleviate the reproducibility crisis currently facing
the field of experimental psychology.

4.4. Broader implications

By incorporating multivariate demographics in big data analyses,
we demonstrated an approach that not only comprehensively interprets
self-report results, but also informs the reproducibility of these results
from a new perspective. Specifically, we replicated the findings in the
experimental literature with new interpretations by incorporating new
demographics at scale.

Specific to the research field of spatial navigation, individual dif-
ferences in self-reported navigation ability have been linked to in-
dividual differences in Global Positioning System (GPS) use (He &
Hegarty, 2020; Hejtmánek, Oravcová, Motýl, Horáček, & Fajnerová,
2018). Understanding more about user characteristics paves the way
towards more efficient human–GPS interactions. In clinical settings,
these analyses inform the future development of an adaptive self-
reported threshold for preclinical screening based on demographic
factors (Coughlan et al., 2019, 2018; Spiers et al., 2021).
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